In this research, cooling of polymer membrane fuel cells by nanofluids is numerically studied. Single-phase homogeneous technique is used to evaluate thermophysical properties of the water/Al2O3 nanofluid as a function of temperature and nanoparticle concentration. Four cooling plates together with four various fluids (with different nanoparticle concentrations) are considered for cooling fuel cells. The impact of geometry, Reynolds number, and concentration is investigated on some imperative parameters such as surface temperature uniformity and pressure drop. The results reveal that, among different cooling plates, the multipass serpentine flow field has the best performance. It is also proved that the use of nanofluid, in general, enhances the cooling process and significantly improves those parameters directly affecting the fuel cell performance and efficiency. By increasing the nanoparticle concentration by 0.006, the temperature uniformity index will decrease about 13%, the minimum and maximum temperature difference at the cooling plate surface will decrease about 13%, and the pressure drop will increase about 35%. Nanofluids can improve thermal characteristics of cooling systems and consequently enhance the efficiency and durability of fuel cells.

References

1.
Frano
,
B.
,
2012
,
PEM Fuel Cells: Theory and Practice
,
Elsevier Academic Press
,
Burlington, MA
.
2.
Hashmi
,
S. M. H.
,
2010
, “
Cooling Strategies for PEMFC Stacks
,”
Ph.D. thesis
, Helmut Schmidt University, Hamburg, Germany.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.894.1935&rep=rep1&type=pdf
3.
Hu
,
P.
,
Cao
,
G. Y.
,
Zhu
,
X. J.
, and
Hu
,
M.
,
2010
, “
Coolant Circuit Modeling and Temperature Fuzzy Control of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
9110
9123
.
4.
Beuscher
,
U.
,
Cleghorn
,
S. J.
, and
Johnson
,
W. B.
,
2005
, “
Challenges for PEM Fuel Cell Membranes
,”
Int. J. Energy Res.
,
29
(
12
), pp.
1103
1112
.
5.
Gode
,
P.
,
Ihonen
,
J.
,
Strandroth
,
A.
,
Ericson
,
H.
,
Lindbergh
,
G.
,
Paronen
,
M.
,
Sundholm
,
F.
,
Sundholm
,
G.
, and
Walsby
,
N.
,
2003
, “
Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes
,”
Fuel Cells
,
3
(
12
), pp.
21
27
.
6.
Maher
,
A. R.
, and
Al-Baghdadi
,
S.
,
2009
, “
A CFD Study of Hygro–Thermal Stresses Distribution in PEM Fuel Cell During Regular Cell Operation
,”
Renewable Energy
,
34
(
3
), pp.
674
682
.
7.
Flückiger
,
R.
,
Tiefenauer
,
A.
,
Ruge
,
M.
,
Aebi
,
C.
,
Wokaun
,
A.
, and
Büchi
,
F. N.
,
2007
, “
Thermal Analysis and Optimization of a Portable, Edge-Air-Cooled PEFC Stack
,”
J. Power Sources
,
172
(
1
), pp.
324
333
.
8.
Wen
,
C. Y.
,
Lin
,
Y. S.
,
Lu
,
C. H.
, and
Luo
,
T. W.
,
2011
, “
Thermal Management of a Proton Exchange Membrane Fuel Cell Stack With Pyrolytic Graphite Sheets and Fans Combined
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6082
6089
.
9.
Wen
,
C. Y.
, and
Huang
,
G. W.
,
2008
, “
Application of a Thermally Conductive Pyrolytic Graphite Sheet to Thermal Management of a PEM Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
132
140
.
10.
Wen
,
C. Y.
,
Lin
,
Y. S.
, and
Lu
,
C. H.
,
2009
, “
Performance of a Proton Exchange Membrane Fuel Cell Stack With Thermally Conductive Pyrolytic Graphite Sheets for Thermal Management
,”
J. Power Sources
,
189
(
2
), pp.
1100
1105
.
11.
Burke
,
K. A.
,
2009
, “
Advanced Fuel Cell System Thermal Management for NASA Exploration Missions
,”
Sixth International Energy Conversion Engineering Conference and Exhibit (IECEC)
, Cleveland, OH, July 28--30, Report No.
NASA/TM-2009-215426
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090027863.pdf
12.
Adzakpa
,
K. P.
,
Ramousse
,
J.
,
Dubé
,
Y.
,
Akremi
,
H.
,
Agbossou
,
K.
,
Dostie
,
M.
,
Poulin
,
A.
, and
Fournier
,
M.
,
2008
, “
Transient Air Cooling Thermal Modeling of a PEM Fuel Cell
,”
J. Power Sources
,
179
(
1
), pp.
164
176
.
13.
Chen
,
F. C.
,
Gao
,
Z.
,
Loutfy
,
R. O.
, and
Hecht
,
M.
,
2003
, “
Analysis of Optimal Heat Transfer in a PEM Fuel Cell Cooling Plate
,”
Fuel Cells
,
3
(
4
), pp.
181
188
.
14.
Lee
,
J. H.
,
2005
, “
Coolant Flow Field Design for Fuel Cell Stacks
,” U.S. Patent No. 6,924,052.
15.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
.
16.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2007
, “
Thermal and Hydrodynamic Performances of Chaotic Mini-Channel: Application to the Fuel Cell Cooling
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
795
803
.
17.
Afshari
,
E.
,
Ziaei-Rad
,
M.
, and
Jahantigh
,
N.
,
2016
, “
Analytical and Numerical Study on Cooling Flow Field Designs Performance of PEM Fuel Cell With Variable Heat Flux
,”
Mod. Phys. Lett. B
,
30
(
16
), p.
1650155
.
18.
Afshari
,
E.
,
Ziaei-Rad
,
M.
, and
Shariati
,
Z.
,
2016
, “
A Study on Using Metal Foam as Coolant Fluid Distributor in the Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
41
(
3
), pp.
1902
1912
.
19.
Afshari
,
E.
,
Ziaei-Rad
,
M.
, and
Mosharaf Dehkordi
,
M.
,
2017
, “
Numerical Investigation on a Novel Zigzag-Shaped Flow Channel Design for Cooling Plates of PEM Fuel Cells
,”
J. Energy Inst.
,
90
(
5
), pp.
752
763
.
20.
Afshari
,
E.
, and
Baharlou Houreh
,
N.
,
2014
, “
Performance Analysis of a Membrane Humidifier Containing Porous Metal Foam as Flow Distributor in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
88
, pp.
612
621
.
21.
Moghadam
,
A. J.
,
Farzane-Gord
,
M.
,
Sajadi
,
M.
, and
Hoseyn-Zadeh
,
M.
,
2014
, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
9
14
.
22.
Ghadiri
,
M.
,
Sardarabadi
,
M.
,
Pasandideh-fard
,
M.
, and
Moghadam
,
A. J.
,
2015
, “
Experimental Investigation of a PVT System Performance Using Nano Ferrofluids
,”
Energy Convers. Manage.
,
103
, pp.
468
476
.
23.
Dalvan
,
H. M.
, and
Moghadam
,
A. J.
,
2018
, “
Experimental Investigation of a Water/Nanofluid Jacket Performance in Stack Heat Recovery
,”
J. Therm. Anal. Calorim.
(epub).
24.
Islam
,
M. R.
,
Shabani
,
B.
,
Rosengaten
,
G.
, and
Andrews
,
J.
,
2015
, “
The Potential of Using Nanofluids in PEM Fuel Cell Cooling Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
523
539
.
25.
Irnie
,
A. Z.
,
Zeno
,
M.
,
Hanapi
,
S.
,
Najmi
,
W. A.
, and
Mohamed
,
W.
,
2014
, “
Thermal and Electrical Experimental Characterization of Ethylene Glycol and Water Mixture Coolants for a 400 W Proton Exchange Membrane Fuel
,”
Appl. Mech. Mater.
,
660
, pp. 391–396.
26.
Rusconi
,
R.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Piazza
,
R.
, and
Hu
,
L. W.
,
2007
, “
Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity
,”
Int. J. Thermophys.
,
28
(
4
), pp.
1131
1146
.
27.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), pp.
1
7
.
28.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2042
2048
.
29.
Ramires
,
M. L.
,
de Castro
,
C. A. N.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M. J.
, and
Wakeham
,
W. A.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
(
3
), pp.
1377
1381
.
30.
Touloukian
,
Y. S.
,
Saxena
,
S.
, and
Hestermans
,
P.
,
1975
,
Thermophysical Properties of Matter: Viscosity
, Vol.
11
,
IFI/Plenum
, New York, DTIC Document No. 73-129616.
31.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
2
(
4
), pp.
613
630
.
32.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
Singapore
.
You do not currently have access to this content.