This paper presents a novel startup approach for solid oxide fuel cell (SOFC) hybrid systems (HSs) based on recompression technology. This startup approach shows a novel method of managing a complete plant to obtain better performance, which is always also a difficult task for equipment manufactures. The research activities were carried out using the HS emulator rig located in Savona (Italy) and developed by the Thermochemical Power Group (TPG) of the University of Genoa. The test rig consists of three integrated technologies: a 100 kWe recuperated microturbine modified for external connections, a high temperature modular vessel necessary to emulate the dimensions of an SOFC stack, and, for air recompression, a turbocharger necessary to increase fuel cell pressure (using part of the recuperator outlet flow) as required for efficiency increase and to manage the cathodic recirculation. It was necessary to develop a theoretical model in order to prevent abnormal plant startup conditions as well as motivated by economic considerations. This transient model of the emulator rig was developed using Matlab®-Simulink® environment to study the time-dependent (including the control system aspects) behavior during the entire system (emulator equipped with the turbocharger) startup condition. The results obtained were able to demonstrate that the HS startup phase can be safely managed with better performance developing a new control logic. In detail, the startup phase reported in this paper shows that all important parameters were always inside acceptable operating zones (surge margin kept above 1.1, turbine outlet temperature (TOT), and fuel flow maintained lower than 918.15 K and 7.7 g/s, respectively).

References

1.
Cobb
,
L.
, 2007, “
The Causes of Global Warming: A Graphical Approach
,”
Quaker Econom.
,
7
(158), epub, http://tqe.quaker.org/2007/TQE158-EN-GlobalWarming.html
2.
Thornton
,
A.
, and
Monroy
,
C. R.
,
2011
, “
Distributed Power Generation in the United States
,”
Renewable Sustainable Energy Rev.
,
15
(9), pp.
4809
4817
.
3.
Yan
,
J.
,
Chou
,
S. K.
,
Desideri
,
U.
, and
Xia
,
X.
,
2014
, “
Innovative and Sustainable Solutions of Clean Energy Technologies and Policies (Part I)
,”
Appl. Energy
,
130
, pp.
447
449
.
4.
Komatsu
,
Y.
,
Brus
,
G.
,
Kimijima
,
S.
, and
Szmyd
,
J. S.
,
2014
, “
The Effect of Overpotentials on the Transient Response of the 300 W SOFC Cell Stack Voltage
,”
Appl. Energy
,
115
, pp.
352
359
.
5.
Yan
,
J.
,
Chou
,
S. K.
,
Desideri
,
U.
,
Tu
,
S. T.
, and
Jin
,
H. G.
,
2013
, “
Research, Development and Innovations for Sustainable Future Energy Systems
,”
Appl. Energy
,
112
, pp.
393
394
.
6.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2013
, “
Hybrid Fuel Cell Gas Turbine System Design and Optimization
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
4
), p.
041005
.
7.
Tucker
,
D.
,
Vanosdol
,
J.
,
Liese
,
E.
,
Lawson
,
L.
,
Zitney
,
S.
,
Gemmen
,
R.
,
Ford
,
J. C.
, and
Haynes
,
C.
,
2012
, “
Evaluation of Methods for Thermal Management in a Coal-Based SOFC Turbine Hybrid Through Numerical Simulation
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041004
.
8.
Nishino
,
T.
, and
Szmyd
,
J. S.
,
2010
, “
Numerical Analysis of a Cell-Based Indirect Internal Reforming Tubular SOFC Operating With Biogas
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
5
), p.
051004
.
9.
Liso
,
V.
,
Olesen
,
A. C.
,
Nielsen
,
M. P.
, and
Kaer
,
S. K.
,
2011
, “
Performance Comparison Between Partial Oxidation and Methane Steam Reforming Processes for Solid Oxide Fuel Cell (SOFC) Micro Combined Heat and Power (CHP) System
,”
Energy
,
36
(
7
), pp.
4216
4226
.
10.
Damo
,
U. M.
,
Ferrari
,
M. L.
,
Turan
,
A.
, and
Massardo
,
A. F.
,
2014
, “
Test Rig for Hybrid System Emulation: New Real-Time Transient Model Validated in a Wide Operative Range
,”
Fuel Cells
,
15
(
1
), pp.
7
14
.
11.
Damo
,
U. M.
,
Ferrari
,
M. L.
,
Turan
,
A.
, and
Massardo
,
A. F.
,
2014
, “
Re-Compression Model for SOFC Hybrid Systems: Start-Up and Shutdown Test for an Emulator Rig
,”
Fuel Cells
,
15
(
1
), pp.
42
48
.
12.
Roberts
,
R. A.
, and
Brouwer
,
J.
,
2006
, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell–Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
18
25
.
13.
Hirschenhofer
,
J. H.
,
Stauffer
,
D. B.
, and
Engleman
,
R. R.
,
1994
,
Fuel Cells—A Handbook (Revision 3)
,
Morgantown Energy Technology Center
,
Morgantown, WV
, Report No. DOE/METC-94/1006.
14.
Lin
,
P. H.
, and
Hong
,
C. W.
,
2006
, “
On the Start-Up Transient Simulation of a Turbo Fuel Cell System
,”
J. Power Sources
,
160
(
2
), pp.
1230
1241
.
15.
Winkler
,
W.
, and
Lorenz
,
H.
,
2002
, “
The Design of Stationary and Mobile Solid Oxide Fuel Cell–Gas Turbine Systems
,”
J. Power Sources
,
105
(
2
), pp.
222
227
.
16.
Hohloch
,
M.
,
Axel
,
W.
,
Dominik
,
L.
,
Tobias
,
P.
, and
Manfred
,
A.
,
2008
, “
Micro Gas Turbine Test Rig for Hybrid Power Plant Application
,”
ASME
Paper No. GT2008-50443.
17.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2007
, “
Early Start-Up of Solid Oxide Fuel Cell Hybrid Systems With Ejector Cathodic Recirculation: Experimental Results and Model Verification
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
5
), pp.
627
635
.
18.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Hybrid System Test Rig: Start-Up and Shutdown Physical Emulation
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
2
), p.
021005
.
19.
Damo
,
U. M.
,
2015
, “
Design and Development of a Micro Gas Turbine Theoretical and Experimental Analysis on the SOFC/mGT Coupling Based on a Hybrid System Emulator Rig
,” Ph.D. thesis, The University of Manchester, Manchester, UK.
20.
Fardadi
,
M.
,
McLarty
,
D. F.
, and
Jabbari
,
F.
,
2013
, “
Actuator Limitations in Spatial Temperature Control of SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
3
), p.
031005
.
21.
Mueller
,
F.
,
Tarroja
,
B.
,
Maclay
,
J.
,
Jabbari
,
F.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2010
, “
Design, Simulation and Control of a 100 MW-Class Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031007
.
22.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2006
, “
Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
221
230
.
23.
Milewski
,
J.
,
Miller
,
A.
, and
Sałaciński
,
J.
,
2007
, “
Off-Design Analysis of SOFC Hybrid System
,”
Int. J. Hydrogen Energy
,
32
(
6
), pp.
687
698
.
24.
Zhang
,
X.
, and
Wu
,
Y.-M.
,
2011
, “
A Control-Oriented Dynamic Model Adapted to Variant Steam-to-Carbon Ratios for an SOFC With Exhaust Fuel Recirculation
,”
Fuel Cells
,
11
(
2
), pp.
200
211
.
25.
Zhou
,
D.
,
Mei
,
J.
,
Chen
,
J.
,
Zhang
,
H.
, and
Weng
,
S.
,
2014
, “
Parametric Analysis on Hybrid System of Solid Oxide Fuel Cell and Micro Gas Turbine With CO2 Capture
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
5
), p.
051001
.
26.
Soares
,
C.
,
2007
,
Microturbines
,
Elsevier/Butterworth-Heinemann
,
Amsterdam
.
27.
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2013
, “
Cathode–Anode Interaction in SOFC Hybrid Systems
,”
Appl. Energy
,
105
, pp.
369
379
.
28.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Traverso
,
A. N.
, and
Massardo
,
A. F.
,
2012
, “
Hybrid System Test Rig: Chemical Composition Emulation With Steam Injection
,”
Appl. Energy
,
97
, pp.
809
815
.
29.
Caratozzolo
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2013
, “
Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software
,”
Fuel Cells
,
13
(
6
), pp.
1123
1130
.
You do not currently have access to this content.