The cathode catalyst layer in a proton exchange membrane fuel cell is now known to contain ionomer nanofibers and experiments have demonstrated a fuel cell performance increase of ∼10% due to those nanofibers. The experiments demonstrate that ionomer nanofibers have proton conductivities that exceed those of the bulk form of the ionomer by more than an order of magnitude. A new model of a proton exchange membrane fuel cell is presented here that predicts the effect of nanofibers on cell performance in terms of the enhanced nanofiber proton conductivity and other relevant variables. The model peak cell power density is ∼7% greater for the case with 10% of the cathode catalyst layer ionomer in nanofiber form versus the same case without nanofibers. This difference is consistent with trends observed in previously published experimental results. These results are significant since they suggest alternative methods to reduce platinum loading in fuel cells and to optimize fuel cell performance.

References

1.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
,
Redondo
,
A.
, and
Srinivasan
,
S.
,
1988
, “
Methods to Advance Technology of Proton-Exchange Membrane Fuel-Cells
,”
J. Electrochem. Soc.
,
135
(
9
), pp.
2209
2214
.10.1149/1.2096240
2.
Wilson
,
M. S.
and
Gottesfeld
,
S.
,
1992
, “
High-Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
,
139
(
2
), pp.
L28
L30
.10.1149/1.2069277
3.
Debe
,
M. K.
,
2011
, “
Advanced Cathode Catalysts and Support for PEM Fuel Cells
,”
DOE Hydrogen Program Review
, Washington, DC, May 9–13.
4.
Janssen
,
G. J. M.
and
Sitters
,
E. F.
,
2007
, “
Performance of Thin-Film Cathodes for Proton-Exchange-Membrane Fuel Cells Based on High-Surface-Area Carbon Supports
,”
J. Power Sources
,
171
(
1
), pp.
8
17
.10.1016/j.jpowsour.2006.11.008
5.
Yoon
,
W.
and
Weber
,
A. Z.
,
2011
, “
Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
B1007
B1018
.10.1149/1.3597644
6.
Cheng
,
C. H.
,
Malek
,
K.
,
Sui
,
P. C.
, and
Djilali
,
N.
,
2010
, “
Effect of Pt Nano-Particle Size on the Microstructure of PEM Fuel Cell Catalyst Layers: Insights From Molecular Dynamics Simulations
,”
Electrochim. Acta
,
55
(
5
), pp.
1588
1597
.10.1016/j.electacta.2009.10.030
7.
Lin
,
J. F.
,
Kamavaram
,
V.
, and
Kannan
,
A. M.
,
2010
, “
Synthesis and Characterization of Carbon Nanotubes Supported Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
(
2
), pp.
466
470
.10.1016/j.jpowsour.2009.07.055
8.
Song
,
D. T.
,
Wang
,
Q. P.
,
Liu
,
Z. S.
,
Navessin
,
T.
,
Eikerling
,
M.
, and
Holdcroft
,
S.
,
2004
, “
Numerical Optimization Study of the Catalyst Layer of PEM Fuel Cell Cathode
,”
J. Power Sources
,
126
(
1-2
), pp.
104
111
.10.1016/j.jpowsour.2003.08.043
9.
Secanell
,
M.
,
Carnes
,
B.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2007
, “
Numerical Optimization of Proton Exchange Membrane Fuel Cell Cathodes
,”
Electrochim. Acta
,
52
(
7
), pp.
2668
2682
.10.1016/j.electacta.2006.09.049
10.
Secanell
,
M.
,
Karan
,
K.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2007
, “
Multi-Variable Optimization of PEMFC Cathodes Using an Agglomerate Model
,”
Electrochim. Acta
,
52
(
22
), pp.
6318
6337
.10.1016/j.electacta.2007.04.028
11.
Berning
,
T.
and
Djilali
,
N.
,
2003
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell—A Parametric Study
,”
J. Power Sources
,
124
(
2
), pp.
440
452
.10.1016/S0378-7753(03)00816-4
12.
Secanell
,
M.
,
Songprakorp
,
R.
,
Djilali
,
N.
, and
Suleman
,
A.
,
2010
, “
Optimization of a Proton Exchange Membrane Fuel Cell Membrane Electrode Assembly
,”
Struct. Multidisc. Optim.
,
40
(
1–6
), pp.
563
583
.10.1007/s00158-009-0387-z
13.
Broka
,
K.
and
Ekdunge
,
P.
,
1997
, “
Modelling the PEM Fuel Cell Cathode
,”
J. Appl. Electrochem.
,
27
(
3
), pp.
281
289
.10.1023/A:1018476612810
14.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
,
2004
, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
,
128
(
2
), pp.
173
184
.10.1016/j.jpowsour.2003.09.072
15.
Huang
,
W.
,
Zhou
,
B.
, and
Sobiesiak
,
A.
,
2006
, “
Steady and Unsteady Modeling of Single PEMFC With Detailed Thermoelectrochemical Model
,”
J. Electrochem. Soc.
,
153
(
10
), pp.
A1945
A1954
.10.1149/1.2266236
16.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
,
2003
, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
,
115
(
1
), pp.
81
89
.10.1016/S0378-7753(02)00622-5
17.
Schwarz
,
D. H.
and
Djilali
,
N.
,
2007
, “
3D Modeling of Catalyst Layers in PEM Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
11
), pp.
B1167
B1178
.10.1149/1.2777011
18.
Liu
,
J.
and
Eikerling
,
M.
,
2008
, “
Model of Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells: The Role of Porous Structure and Water Accumulation
,”
Electrochim. Acta
,
53
(
13
), pp.
4435
4446
.10.1016/j.electacta.2008.01.033
19.
Weber
,
A. Z.
and
Newman
,
J.
,
2006
, “
Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
12
), pp.
A2205
A2214
.10.1149/1.2352039
20.
Weber
,
A. Z.
,
Darling
,
R. M.
, and
Newman
,
J.
,
2004
, “
Modeling Two-Phase Behavior in PEFCs
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1715
A1727
.10.1149/1.1792891
21.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
(
1-2
), pp.
284
294
.10.1016/S0378-7753(01)01057-6
22.
Thampan
,
T.
,
Malhotra
,
S.
,
Zhang
,
J. X.
, and
Datta
,
R.
,
2001
, “
PEM Fuel Cell as a Membrane Reactor
,”
Catal. Today
,
67
(
1-3
), pp.
15
32
.10.1016/S0920-5861(01)00278-4
23.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
1999
, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
,
37
(
4
), pp.
431
452
.10.1016/S0020-7225(98)00079-2
24.
Bevers
,
D.
,
Wohr
,
M.
,
Yasuda
,
K.
, and
Oguro
,
K.
,
1997
, “
Simulation of a Polymer Electrolyte Fuel Cell Electrode
,”
J. Appl. Electrochem.
,
27
(
11
), pp.
1254
1264
.10.1023/A:1018488021355
25.
Berning
,
T.
and
Djilali
,
N.
,
2003
, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
150
(
12
), pp.
A1589
A1598
.10.1149/1.1621412
26.
Chia
,
E. S. J.
,
Benziger
,
J. B.
, and
Kevrekidis
,
L. G.
,
2006
, “
STR-PEM Fuel Cell as a Reactor Building Block
,”
AIChE J.
,
52
(
11
), pp.
3902
3910
.10.1002/aic.10987
27.
Bernardi
,
D. M.
and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.10.1149/1.2221251
28.
Sivertsen
,
B. R.
and
Djilali
,
N.
,
2005
, “
CFD-Based Modelling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
141
(
1
), pp.
65
78
.10.1016/j.jpowsour.2004.08.054
29.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
,
2002
, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode—I. Mathematical Model
,”
J. Electrochem. Soc.
,
149
(
4
), pp.
A437
A447
.10.1149/1.1456916
30.
Ihonen
,
J.
,
Jaouen
,
F.
,
Lindbergh
,
G.
,
Lundblad
,
A.
, and
Sundholm
,
G.
,
2002
, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode—II. Experimental
,”
J. Electrochem. Soc.
,
149
(
4
), pp.
A448
A454
.10.1149/1.1456917
31.
Schwarz
,
D. H.
and
Djilali
,
N.
,
2009
, “
Three-Dimensional Modelling of Catalyst Layers in PEM Fuel Cells: Effects of Non-Uniform Catalyst Loading
,”
Int. J. Energy Res.
,
33
(
7
), pp.
631
644
.10.1002/er.1497
32.
Dannenberg
,
K.
,
Ekdunge
,
P.
, and
Lindbergh
,
G.
,
2000
, “
Mathematical Model of the PEMFC
,”
J. Appl. Electrochem.
,
30
(
12
), pp.
1377
1387
.10.1023/A:1026534931174
33.
Marr
,
C.
and
Li
,
X. G.
,
1999
, “
Composition and Performance Modelling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
77
(
1
), pp.
17
27
.10.1016/S0378-7753(98)00161-X
34.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
(
10
), pp.
4727
4765
.10.1021/cr020718s
35.
Snyder
,
J. D.
and
Elabd
,
Y. A.
,
2009
, “
Nafion® Nanofibers and Their Effect on Polymer Electrolyte Membrane Fuel Cell Performance
,”
J. Power Sources
,
186
(
2
), pp.
385
392
.10.1016/j.jpowsour.2008.10.039
36.
Dong
,
B.
,
Gwee
,
L.
,
Salas-de la Cruz
,
D.
,
Winey
,
K. I.
, and
Elabd
,
Y. A.
,
2010
, “
Super Proton Conductive High-Purity Nafion Nanofibers
,”
Nano Lett.
,
10
(
9
), pp.
3785
3790
.10.1021/nl102581w
37.
See supplementary material at http://dx.doi.org/10.1115/1.4026985 for additional results, further model details, the water distribution calculation, and the time constant study.
38.
Hronec
,
C.
,
2005
, “
Catalyst Layer Network Formation in Polymer Electrolyte Membrane Fuel Cells
,” M.S. thesis, Drexel Chemical Engineering, Drexel University, Philadelphia, PA.
39.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
40.
Wang
,
Q. P.
,
Song
,
D. T.
,
Navessin
,
T.
,
Holdcroft
,
S.
, and
Liu
,
Z. S.
,
2004
, “
A Mathematical Model and Optimization of the Cathode Catalyst Layer Structure in PEM Fuel Cells
,”
Electrochim. Acta
,
50
(
2–3
), pp.
725
730
.10.1016/j.electacta.2004.01.113
41.
Monroe
,
C. W.
,
Romero
,
T.
,
Merida
,
W.
, and
Eikerling
,
M.
,
2008
, “
A Vaporization-Exchange Model for Water Sorption and Flux in Nafion
,”
J. Membr. Sci.
,
324
(
1-2
), pp.
1
6
.10.1016/j.memsci.2008.05.080
42.
Hill
,
C. G.
, Jr.
,
1977
,
An Introduction To Chemical Engineering Kinetics and Reactor Design
,
John Wiley and Sons, Inc.
,
New York
.
43.
eber
,
A. Z.
and
Newman
,
J.
,
2004
, “
Transport in Polymer-Electrolyte Membranes—II. Mathematical Model
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A311
A325
.10.1149/1.1639157
44.
Weber
,
A. Z.
and
Newman
,
J.
,
2004
, “
Transport in Polymer-Electrolyte Membranes—III. Model Validation in a Simple Fuel-Cell Model
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A326
A339
.10.1149/1.1639158
45.
Abbasi
,
M. H.
,
Evans
,
J. W.
, and
Abramson
,
I. S.
,
1983
, “
Diffusion of Gases in Porous Solids: Monte Carlo Simulations in the Knudsen and Ordinary Diffusion Regimes
,”
AIChE J.
,
29
(
4
), pp.
617
624
.10.1002/aic.690290415
46.
Kimball
,
E.
,
Whitaker
,
T.
,
Kevrekidis
,
Y. G.
, and
Benziger
,
J. B.
,
2008
, “
Drops, Slugs, and Flooding in Polymer Electrolyte Membrane Fuel Cells
,”
AIChE J.
,
54
(
5
), pp.
1313
1332
.10.1002/aic.11464
47.
Carnes
,
B.
and
Djilali
,
N.
,
2006
, “
Analysis of Coupled Proton and Water Transport in a PEM Fuel Cell Using the Binary Friction Membrane Model
,”
Electrochim. Acta
,
52
(
3
), pp.
1038
1052
.10.1016/j.electacta.2006.07.006
48.
Weber
,
A. Z.
and
Hickner
,
M. A.
,
2008
, “
Modeling and High-Resolution- Imaging Studies of Water-Content Profiles in a Polymer-Electrolyte-Fuel-Cell Membrane-Electrode Assembly
,”
Electrochim. Acta
,
53
(
26
), pp.
7668
7674
.10.1016/j.electacta.2008.05.018
49.
Eikerling
,
M.
,
2006
, “
Water Management in Cathode Catalyst Layers of PEM Fuel Cells—A Structure-Based Model
,”
J. Electrochem. Soc.
,
153
(
3
), pp.
E58
E70
.10.1149/1.2160435
50.
Gurau
,
V.
and
Mann
,
J. A.
,
2009
, “
A Critical Overview of Computational Fluid Dynamics Multiphase Models for Proton Exchange Membrane Fuel Cells
,”
SIAM J. Appl. Math.
,
70
(
2
), pp.
410
454
.10.1137/080727993
51.
Gode
,
P.
,
Jaouen
,
F.
,
Lindbergh
,
G.
,
Lundblad
,
A.
, and
Sundholm
,
G.
,
2003
, “
Influence of the Composition on the Structure and Electrochemical Characteristics of the PEFC Cathode
,”
Electrochim. Acta
,
48
(
28
), pp.
4175
4187
.10.1016/S0013-4686(03)00603-0
52.
Adamson
,
A. W.
and
Gast
,
A. P.
,
1997
,
Physical Chemistry of Surfaces
,
Wiley
,
New York
.
53.
Weber
,
A. Z.
and
Newman
,
J.
,
2004
, “
A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells
,”
AIChE J.
,
50
(
12
), pp.
3215
3226
.10.1002/aic.10230
54.
Eirich
,
B. D.
,
2007
, “
Ion-Exchanged Carbon Supported Platinum Catalysts for Fuel Cells
,” M.S. thesis, Drexel Chemical Engineering, Drexel University, Philadelphia, PA.
55.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
,
1992
, “
Pressure-Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode Nafion Interface—Electrode-Kinetics and Mass-Transport
,”
J. Electrochem. Soc.
,
139
(
10
), pp.
2856
2862
.10.1149/1.2068992
56.
Sun
,
W.
,
Peppley
,
B. A.
, and
Karan
,
K.
,
2005
, “
An Improved Two-Dimensional Agglomerate Cathode Model to Study the Influence of Catalyst Layer Structural Parameters
,”
Electrochim. Acta
,
50
(
16-17
), pp.
3359
3374
.10.1016/j.electacta.2004.12.009
You do not currently have access to this content.