Thermal, electrical, and electrocatalytical properties of the oxygen deficient La0.5Sr0.2TiO2.95 perovskite are studied in relation to their possible use as solid oxide fuel cell (SOFC) anode material. La0.5Sr0.2TiO2.95 is chemically stable under air and reduced atmosphere. Its thermal expansion coefficient is close to that of yttrium-stabilized zirconia (YSZ) under air and Ar/H2 (5%). No significant chemical expansion or contraction of La0.5Sr0.2TiO2.95 are observed between air and reduced atmosphere. La0.5Sr0.2TiO2.95 material has an electrical conductivity at 800 °C of 1 S cm−1 under moist hydrogen (H2/H2O (3%)), reaching 10 S cm−1 when LSTO is prereduced under Ar/H2(5%). The polarization resistance of La0.5Sr0.2TiO2.95 at 800 °C under moist hydrogen is about 1.5 Ω cm2, a value which has been obtained when including a thin CGO buffer layer between the dense YSZ electrolyte and the porous electrode.

References

1.
Singh
,
P.
, and
Minh
,
N. Q.
,
2004
, “
Solid Oxide Fuel Cells: Technology Status
,”
Int. Appl. Ceram. Technol.
,
1
(1), pp.
5
15
.10.1111/j.1744-7402.2004.tb00149.x
2.
Yamamoto
,
O.
,
2000
, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochem. Acta
,
45
(15–16), pp.
2423
2435
.10.1016/S0013-4686(00)00330-3
3.
Singhal
,
S. C.
,
2002
, “
Solid Oxide Fuel Cells For Stationary, Mobile, And Military Applications
,”
Solid State Ionics
,
152–153
, pp.
405
410
.10.1016/S0167-2738(02)00349-1
4.
Sauvet
,
A. L.
, and
Irvine
,
J. T. S.
,
2004
, “
Catalytic Activity for Steam Reforming and Physical Characterisation of La1-xSrxCr1-yNiyO3-δ
,”
Solid State Ionics
,
167
(1–2), pp.
1
8
.10.1016/j.ssi.2003.11.021
5.
Karthon
,
V. V.
,
Tsipis
,
E. V.
,
Marozau
,
I. P.
,
Viskup
,
A. P.
,
Frade
J. R.
, and
Irvine
,
J. T. S.
,
2006
, “
Mixed Conductivity and Electrochemical Behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ
,”
Solid State Ionics
,
178
(1–2), pp.
101
113
.10.1016/j.ssi.2006.11.012
6.
Vernoux
,
P.
,
Guillodo
,
M.
,
Fouletier
,
J.
, and
Hammou
,
A.
,
2000
, “
Alternative Anode Material for Gradual Methane Reforming in Solid Oxide Fuel Cells
,”
Solid State Ionics
,
135
(1–4), pp.
425
431
.10.1016/S0167-2738(00)00390-8
7.
Tao
,
S.
, and
Irvine
,
J. T. S.
,
2003
, “
A Redox-Stable Efficient Anode for Solid-Oxide Fuel Cells
,”
Nature
,
2
(5), pp.
320
323
.10.1038/nmat871
8.
Tao
,
S.
, and
Irvine
,
J. T. S.
,
2004
, “
Investigation of the Mixed Conducting Oxide ScYZT as a Potential SOFC Anode Material
,”
J. Electrochem. Soc.
,
151
(2), pp.
A252
A259
.10.1149/1.1639161
9.
Lay
,
E.
,
Gauthier
,
G.
,
Rosini
,
S.
,
Savaniu
,
C.
, and
Irvine
,
J. T. S.
,
2008
, “
Ce-Substituted LSCM as New Anode Material for SOFC Operating in Dry Methane
,”
Solid State Ionics
,
179
(27–32), pp.
1562
1566
.10.1016/j.ssi.2007.12.072
10.
Ruiz-Morales
,
J.-C.
,
Canales-Vásquez
,
J.
,
Savaniu
,
C.
,
Marrero-López
,
D.
,
Zhou
,
W.
, and
Irvine
,
J. T. S.
,
2006
, “
Disruption of Extended Defects in Solid Oxide Fuel Cell Anodes for Methane Oxidation
,”
Nature
,
439
(7076), pp.
568
571
.10.1038/nature04438
11.
Ruiz-Morales
,
J.-C.
,
Canales-Vásquez
,
J.
,
Savaniu
,
C.
,
Marrero-López
,
D.
,
Núñez
,
P.
,
Zhou
,
W.
, and
Irvine
,
J. T. S.
,
2007
, “
A New Anode for Solid Oxide Fuel Cells With Enhanced OCV Under Methane Operation
,”
Phys. Chem. Chem. Phys.
,
9
(15), pp.
1821
1830
.10.1039/b617266k
12.
Tsevetkova
,
Y.
, and
Kozhukharov
,
V.
,
2009
, “
Synthesis and Study of Compositions of the La-Sr-Ti-O System for SOFCs Anode Development
,”
Materials and Design
,
30
(1), pp.
206
209
.10.1016/j.matdes.2008.04.018
13.
Fu
,
Q. X.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2006
, “
La0.6Sr0.6Ti1-xMnxO3-δ Perovskites as Anode Materials for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
153
(4), pp.
D74
D83
.10.1149/1.2170585
14.
Ovalle
,
A.
,
Ruiz-Morales
,
J.-C.
,
Canales-Vásquez
,
J.
,
Marrero-López
,
D.
, and
Irvine
,
J. T. S.
,
2006
, “
Mn-Substituted Titanates as Efficient Anodes for Direct Methane SOFCs
,”
Solid State Ionics
,
177
(19–25), pp.
1997
2003
.10.1016/j.ssi.2006.06.014
15.
Tao
,
S.
, and
Irvine
,
J. T. S.
,
2002
, “
Optimization of Mixed Conducting Properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 Solid Solutions as Potential SOFC Anode Materials
,”
J. Solid State Chem.
,
165
(1), pp.
12
18
.10.1006/jssc.2001.9477
16.
Canales-Vásquez
,
J.
,
Tao
S.
, and
Irvine
,
J. T. S.
,
2003
, “
Electrical Properties in La2Sr4Ti6O19-δ: A Potential Anode for High Temperature Fuel Cells
,”
Solid State Ionics
,
159
(1–2), pp.
159
165
.10.1016/S0167-2738(03)00002-X
17.
Slater
,
P. R.
, and
Irvine
,
J. T. S.
,
1999
, “
Niobium Based Tetragonal Tungsten Bronzes as Potential Anodes for Solid Oxide Fuel Cells: Synthesis and Electrical Characterization
,”
Solid State Ionics
,
120
(1–4), pp.
125
134
.10.1016/S0167-2738(99)00020-X
18.
Holtappels
,
P.
,
Poulsen
,
F. W.
, and
Mogensen
,
M.
,
2000
, “
Electrical Conductivities and Chemical Stabilities of Mixed Conducting Pyrochlores for SOFC Applications
,”
Solid State Ionics
,
135
(1–4), pp.
675
679
.10.1016/S0167-2738(00)00379-9
19.
Marina
,
O. A.
,
Canfield
,
N. L.
, and
Stevenson
,
J. W.
,
2002
, “
Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate
,”
Solid State Ionics
,
149
(1–2), pp.
21
28
.10.1016/S0167-2738(02)00140-6
20.
Mukundan
,
R.
,
Brosha
,
E. L.
, and
Garzon
,
F. H.
,
2004
, “
Sulfur Tolerant Anodes for SOFCs
,”
Electrochem. Solid-State Lett.
,
7
(1), pp.
A5
A7
.10.1149/1.1627452
21.
Fagg
,
D. P.
,
Karthon
,
V. V.
,
Frade
,
J. R.
, and
Ferreira
,
A. A. L.
,
2003
, “
Stability and Mixed Ionic-Electronic Conductivity of (Sr,La)(Ti,Fe)O3-δ Perovskites
,”
Solid State Ionics
,
156
(1–2), pp.
45
57
.10.1016/S0167-2738(02)00257-6
22.
Lepe
,
F. J.
,
Fernández-Urbán
,
J.
,
Mestres
,
L.
, and
Martínez-Sarrión
,
M. L.
,
2005
, “
Synthesis and Electrical Properties of Nex Rare-Earth Titanium Perovskites for SOFC-Anode Applications
,”
J. Power Sources
,
151
, pp.
74
78
.10.1016/j.jpowsour.2005.02.087
23.
Abe
,
M.
, and
Uchino
,
K.
,
1974
, “
X-Ray Study of the Deficient Perovskite La23TiO3
,”
Mater. Res. Bull.
,
9
(2), pp.
147
155
.10.1016/0025-5408(74)90194-9
24.
Skapin
,
S.
,
Kolar
,
D.
, and
Suvorov
,
D.
,
1993
, “
X-Ray Diffraction and Microstructural Investigation of the Al2O3-La2O3-TiO2 System
,”
J. Am. Ceram. Soc.
,
76
(9), pp.
2359
2362
.10.1111/j.1151-2916.1993.tb07777.x
25.
Douy
,
A.
, and
Odier
,
P.
,
1989
, “
The Polyacrylamide Gel: A Novel Route to Ceramic and Glassy Oxide Powders
,”
Mater. Res. Bull.
,
24
(9), pp.
1119
1126
.10.1016/0025-5408(89)90069-X
26.
Sin
,
A.
, and
Odier
,
P.
,
2000
, “
Gelation by Acrylamide, a Quasi-Universal Medium for the Synthesis of Fine Powders for Electroceramics Applications
,”
Adv. Mater.
,
12
(
9
), pp.
649
652
.10.1002/(SICI)1521-4095(200005)12:9<649::AID-ADMA649>3.0.CO;2-K
27.
Kingery
,
W. D.
,
Bowen
,
H. K.
, and
Uhlmann
,
D. R.
,
1976
,
Introduction to Ceramics
,
John Wiley
,
New York
.
28.
Howe
,
R. F.
, and
Gratzel
,
M.
,
1985
, “
Electron-Paramagnetic-Resonance Observation of Trapped Electrons in Colloidal TiO2
,”
J. Phys. Chem.
,
89
(21), pp.
4495
4499
.10.1021/j100267a018
29.
Purcell
T.
, and
Weeks
,
R. A.
,
1971
, “
Paramagnetic Defects in TiO2 Produced by Radiation
,”
J. Chem. Phys.
,
54
(7), pp.
2800
2810
.10.1063/1.1675259
30.
Mauvy
,
F.
,
Lalanne
,
C.
,
Bassat
,
J.-M.
,
Grenier
,
J.-C.
,
Zhao
,
H.
, and
Huo
,
L.
,
2006
, “
Electrode Properties of Ln2NiO4+δ (Ln = La, Nd, Pr): AC Impedance and DC Polarization Studies
,”
J. Electrochem. Soc.
,
153
(
8
), pp.
A1547
A1553
.10.1149/1.2207059
31.
Vernoux
,
P.
,
1998
, “
Reformage Interne Progressif du Methane Dans les Piles à Combustible à Oxyde Electrolyte Solide
,” Ph.D. thesis, Grenoble INP, Grenoble, France.
32.
Savaniu
,
C. D.
, and
Irvine
,
J. T. S.
,
2011
, “
La-Doped SrTiO3 as Anode Material for IT-SOFC
,”
Solid State Ionics
,
192
(1), pp.
491
493
.10.1016/j.ssi.2010.02.010
You do not currently have access to this content.