Abstract

Estimating the state of health is a critical function of a battery management system, but remains challenging due to variability of operating conditions and usage requirements in real applications. As a result, existing techniques based on fitting equivalent circuit models may exhibit inaccuracy at extremes of performance and over long-term ageing, or instability of parameter estimates. Pure data-driven techniques, on the other hand, suffer from a lack of generality beyond their training dataset. Here, we propose a novel hybrid approach combining data- and model-driven techniques for battery health estimation, estimating both capacity loss and resistance increase. Specifically, we use a Bayesian method, Gaussian process regression, to estimate model parameters as functions of states, operating conditions, and lifetime. Computational efficiency is ensured by a recursive implementation, yielding a joint state-parameter estimator that learns parameter dynamics from data and is robust to gaps and varying operating conditions. Results show the efficacy of the method, on both simulated and measured drive cycle data, including accurate estimates and forecasts of battery capacity and internal resistance. This opens up new opportunities to understand battery ageing from field data.

References

1.
Figgener
,
J.
,
Stenzel
,
P.
,
Kairies
,
K. P.
,
Linßen
,
J.
,
Haberschusz
,
D.
,
Wessels
,
O.
,
Angenendt
,
G.
,
Robinius
,
M.
,
Stolten
,
D.
, and
Sauer
,
D. U.
,
2020
, “
The Development of Stationary Battery Storage Systems in Germany – A Market Review
,”
J. Energy Storage
,
29
(Dec. 2019), p.
101153
.10.1016/j.est.2019.101153
2.
Tsiropoulos
,
I.
,
Tarvydas
,
D.
, and
Lebedeva
,
N.
,
2018
, “
Li-Ion Batteries for Mobility and Stationary Storage applications - Scenarios for Costs and Market Growth
,” Publications Office of the European Union, Luxembourg, UK.10.2760/87175
3.
Ziegler
,
M. S.
,
Song
,
J.
, and
Trancik
,
J. E.
,
2021
, “
Determinants of Lithium-Ion Battery Technology Cost Decline
,”
Energy Environ. Sci.
,
14
(
12
), pp.
6074
6098
.10.1039/D1EE01313K
4.
Dnv Renewables
,
A.
,
2021
, “
Techno-Economic Analysis of Battery Energy Storage for Reducing Fossil Fuel Use in Sub-Saharan Africa
,” DNV Renewables Advisory, London, UK, Report. No.
L2C204644
.https://www.faraday.ac.uk/wp content/uploads/2021/10/TEA_Report_Faraday_BESS_FINAL.pdf
5.
IEA,
2021
, “
The Role of Critical Minerals in Clean Energy Transitions
,” International Energy Agency, Paris, France, accessed Feb. 12, 2025, https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions
6.
Sulzer
,
V.
,
Mohtat
,
P.
,
Aitio
,
A.
,
Lee
,
S.
,
Yeh
,
Y. T.
,
Steinbacher
,
F.
,
Khan
,
M. U.
,
Lee
,
J. W.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Howey
,
D. A.
,
2021
, “
The Challenge and Opportunity of Battery Lifetime Prediction From Field Data
,”
Joule
,
5
(
8
), pp.
1934
1955
.10.1016/j.joule.2021.06.005
7.
Berecibar
,
M.
,
Gandiaga
,
I.
,
Villarreal
,
I.
,
Omar
,
N.
,
Van Mierlo
,
J.
, and
Van Den Bossche
,
P.
,
2016
, “
Critical Review of State of Health Estimation Methods of Li-Ion Batteries for Real Applications
,”
Renewable Sustainable Energy Rev.
, 56, pp.
572
587
.10.1016/j.rser.2015.11.042
8.
von Bülow
,
F.
, and
Meisen
,
T.
,
2023
, “
A Review on Methods for State of Health Forecasting of Lithium-Ion Batteries Applicable in Real-World Operational Conditions
,”
J. Energy Storage
,
57
, p.
105978
.10.1016/j.est.2022.105978
9.
Dubarry
,
M.
,
Baure
,
G.
, and
Anseán
,
D.
,
2020
, “
Perspective on State-of-Health Determination in Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
4
), p.
044701
.10.1115/1.4045008
10.
Ling
,
L.
, and
Wei
,
Y.
,
2021
, “
State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dual Fractional-Order Extended Kalman Filter and Online Parameter Identification
,”
IEEE Access
,
9
, pp.
47588
47602
.10.1109/ACCESS.2021.3068813
11.
Baba
,
A.
, and
Adachi
,
S.
,
2015
, “
Simultaneous State of Charge and Parameter Estimation of Lithium-Ion Battery Using Log-Normalized Unscented Kalman Filter
,”
American Control Conference (ACC)
, Chicago, IL, July 1–3, pp.
311
316
.10.1109/ACC.2015.7170754
12.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.10.1016/j.jpowsour.2004.02.033
13.
Plett
,
G. L.
,
2006
, “
Sigma-Point Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs Part 2: Simultaneous State and Parameter Estimation
,”
J. Power Sources
,
161
(
2
), pp.
1369
1384
.10.1016/j.jpowsour.2006.06.004
14.
Kim
,
I. S.
,
2010
, “
A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer
,”
IEEE Trans. Power Electron.
,
25
(
4
), pp.
1013
1022
.10.1109/TPEL.2009.2034966
15.
Ascencio
,
P.
,
Smith
,
K.
,
Howey
,
D.
, and
Monroe
,
C. W.
,
2019
, “
Augmented State Observer for Simultaneous Estimation of Charge State and Crossover in Self-Discharging Disproportionation Redox Flow Batteries
,” IEEE Conference on Control Technology and Applications (
CCTA
), Hong Kong, China, Aug. 19–21, pp.
481
486
.10.1109/CCTA.2019.8920467
16.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2009
, “
Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
291
296
.10.1109/TIM.2008.2005965
17.
Guha
,
A.
, and
Patra
,
A.
,
2018
, “
State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models
,”
IEEE Trans. Transp. Electrification
,
4
(
1
), pp.
135
146
.10.1109/TTE.2017.2776558
18.
Gomez
,
J.
,
Nelson
,
R.
,
Kalu
,
E. E.
,
Weatherspoon
,
M. H.
, and
Zheng
,
J. P.
,
2011
, “
Equivalent Circuit Model Parameters of a High-Power Li-Ion Battery: Thermal and State of Charge Effects
,”
J. Power Sources
,
196
(
10
), pp.
4826
4831
.10.1016/j.jpowsour.2010.12.107
19.
Remmlinger
,
J.
,
Buchholz
,
M.
,
Meiler
,
M.
,
Bernreuter
,
P.
, and
Dietmayer
,
K.
,
2011
, “
State-of-Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by on-Board Internal Resistance Estimation
,”
J. Power Sources
,
196
(
12
), pp.
5357
5363
.10.1016/j.jpowsour.2010.08.035
20.
Aitio
,
A.
, and
Howey
,
D. A.
,
2021
, “
Predicting Battery End of Life From Solar Off-Grid System Field Data Using Machine Learning
,”
Joule
,
5
(
12
), pp.
3204
3220
.10.1016/j.joule.2021.11.006
21.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
22.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.10.1149/1.2054684
23.
Aitio
,
A.
,
Marquis
,
S. G.
,
Ascencio
,
P.
, and
Howey
,
D.
,
2020
, “
Bayesian Parameter Estimation Applied to the Li-Ion Battery Single Particle Model With Electrolyte Dynamics
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
12497
12504
.10.1016/j.ifacol.2020.12.1770
24.
Bizeray
,
A. M.
,
Kim
,
J.
,
Duncan
,
S. R.
, and
Howey
,
D. A.
,
2019
, “
Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model
,”
IEEE Trans. Control Syst. Technol.
,
27
(
5
), pp.
1862
1877
.10.1109/TCST.2018.2838097
25.
Chaoui
,
H.
, and
Ibe-Ekeocha
,
C. C.
,
2017
, “
State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8773
8783
.10.1109/TVT.2017.2715333
26.
Li
,
W.
,
Sengupta
,
N.
,
Dechent
,
P.
,
Howey
,
D.
,
Annaswamy
,
A.
, and
Sauer
,
D. U.
,
2021
, “
Online Capacity Estimation of Lithium-Ion Batteries With Deep Long Short-Term Memory Networks
,”
J. Power Sources
,
482
, p.
228863
.10.1016/j.jpowsour.2020.228863
27.
Qin
,
Y.
,
Yuen
,
C.
,
Yin
,
X.
, and
Huang
,
B.
,
2023
, “
A Transferable Multistage Model With Cycling Discrepancy Learning for Lithium-Ion Battery State of Health Estimation
,”
IEEE Trans. Ind. Inf.
,
19
(
2
), pp.
1933
1946
.10.1109/TII.2022.3205942
28.
Wang
,
Q.
,
Ye
,
M.
,
Cai
,
X.
,
Sauer
,
D. U.
, and
Li
,
W.
,
2023
, “
Transferable Data-Driven Capacity Estimation for Lithium-Ion Batteries With Deep Learning: A Case Study From Laboratory to Field Applications
,”
Appl. Energy
,
350
, p.
121747
.10.1016/j.apenergy.2023.121747
29.
Richardson
,
R. R.
,
Birkl
,
C. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2019
, “
Gaussian Process Regression for In Situ Capacity Estimation of Lithium-Ion Batteries
,”
IEEE Trans. Ind. Inf.
,
15
(
1
), pp.
127
138
.10.1109/TII.2018.2794997
30.
You
,
G-W.
,
Park
,
S.
, and
Oh
,
D.
,
2016
, “
Real-Time State-of-Health Estimation for Electric Vehicle Batteries: A Data-Driven Approach
,”
Appl. Energy
,
176
, pp.
92
103
.10.1016/j.apenergy.2016.05.051
31.
Greenbank
,
S.
, and
Howey
,
D.
,
2022
, “
Automated Feature Extraction and Selection for Data-Driven Models of Rapid Battery Capacity Fade and End of Life
,”
IEEE Trans. Ind. Inf.
,
18
(
5
), pp.
2965
2973
.10.1109/TII.2021.3106593
32.
Qin
,
Y.
,
Arunan
,
A.
, and
Yuen
,
C.
,
2023
, “
Digital Twin for Real-Time Li-Ion Battery State of Health Estimation With Partially Discharged Cycling Data
,”
IEEE Trans. Ind. Inf.
,
19
(
5
), pp.
7247
7257
.10.1109/TII.2022.3230698
33.
Wang
,
Q.
,
Wang
,
Z.
,
Liu
,
P.
,
Zhang
,
L.
,
Sauer
,
D. U.
, and
Li
,
W.
,
2023
, “
Large-Scale Field Data-Based Battery Aging Prediction Driven by Statistical Features and Machine Learning
,”
Cell Rep. Phys. Sci.
,
4
(
12
), p.
101720
.10.1016/j.xcrp.2023.101720
34.
Steininger
,
V.
,
Rumpf
,
K.
,
Hüsson
,
P.
,
Li
,
W.
, and
Sauer
,
D. U.
,
2023
, “
Automated Feature Extraction to Integrate Field and Laboratory Data for Aging Diagnosis of Automotive Lithium-Ion Batteries
,”
Cell Rep. Phys. Sci.
,
4
(
10
), p.
101596
.10.1016/j.xcrp.2023.101596
35.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2019
, “
Battery Health Prediction Under Generalized Conditions Using a Gaussian Process Transition Model
,”
J. Energy Storage
,
23
, pp.
320
328
.10.1016/j.est.2019.03.022
36.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2017
, “
Gaussian Process Regression for Forecasting Battery State of Health
,”
J. Power Sources
,
357
, pp.
209
219
.10.1016/j.jpowsour.2017.05.004
37.
Zhang
,
C.
,
He
,
Y.
,
Yuan
,
L.
, and
Xiang
,
S.
,
2017
, “
Capacity Prognostics of Lithium-Ion Batteries Using EMD Denoising and Multiple Kernel RVM
,”
IEEE Access
,
5
, pp.
12061
12070
.10.1109/ACCESS.2017.2716353
38.
Dong
,
G.
,
Yang
,
F.
,
Wei
,
Z.
,
Wei
,
J.
, and
Tsui
,
K.-L.
,
2020
, “
Data-Driven Battery Health Prognosis Using Adaptive Brownian Motion Model
,”
IEEE Trans. Ind. Inf.
,
16
(
7
), pp.
4736
4746
.10.1109/TII.2019.2948018
39.
Xu
,
P.
,
Hu
,
X.
,
Liu
,
B.
,
Ouyang
,
T.
, and
Chen
,
N.
,
2022
, “
Hierarchical Estimation Model of State-of-Charge and State-of-Health for Power Batteries Considering Current Rate
,”
IEEE Trans. Ind. Inf.
,
18
(
9
), pp.
6150
6159
.10.1109/TII.2021.3131725
40.
Li
,
W.
,
Chen
,
J.
,
Quade
,
K.
,
Luder
,
D.
,
Gong
,
J.
, and
Sauer
,
D. U.
,
2022
, “
Battery Degradation Diagnosis With Field Data, Impedance-Based Modeling and Artificial Intelligence
,”
Energy Storage Mater.
,
53
, pp.
391
403
.10.1016/j.ensm.2022.08.021
41.
Brucker
,
J.
,
Bessler
,
W. G.
, and
Gasper
,
R.
,
2021
, “
Grey-Box Modelling of Lithium-Ion Batteries Using Neural Ordinary Differential Equations
,”
Energy Inf.
4
(Suppl 3), pp.
1
13
.10.1186/s42162-021-00170-8
42.
Fan
,
K.
,
Wan
,
Y.
, and
Jiang
,
B.
,
2022
, “
State-of-Charge Dependent Equivalent Circuit Model Identification for Batteries Using Sparse Gaussian Process Regression
,”
J. Process Control
,
112
, pp.
1
11
.10.1016/j.jprocont.2021.12.012
43.
Chen
,
X.
,
Chen
,
X.
, and
Chen
,
X.
,
2021
, “
A Novel Framework for Lithium-Ion Battery State of Charge Estimation Based on Kalman Filter Gaussian Process Regression
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13238
13249
.10.1002/er.6649
44.
Solin
,
A.
,
2016
, “
Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression
,”
Ph.D. thesis
,
Aalto University
, Aalto, Finland.https://aaltodoc.aalto.fi/items/b1b35469-533e-4f06-bef3-06ac9e570009
45.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
, “
Adaptive Computation and Machine Learning
,”
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
46.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
2
,
Springer
, New York, pp.
1122
1128
.
47.
Görtler
,
J.
,
Kehlbeck
,
R.
,
Deussen
,
O.
,
2019
, “
A Visual Exploration of Gaussian Processes
,”
Distill
,
4
(
4
), p. e17a.10.23915/distill.00017
48.
Pietiläinen
,
V.
,
2010
, “
Approximations for Integration Over the Hyperparameters in Gaussian Processes
,” Ph.D. thesis, Aalto University, Aalto, Finland.
49.
Kucukelbir
,
A.
,
Blei
,
D. M.
,
Gelman
,
A.
,
Ranganath
,
R.
, and
Tran
,
D.
,
2017
, “
Automatic Differentiation Variational Inference
,”
J. Mach. Learn. Res.
,
18
, pp.
1
45
.https://www.jmlr.org/papers/volume18/16-107/16-107.pdf
50.
Vanhatalo
,
J.
,
Pietiläinen
,
V.
, and
Vehtari
,
A.
,
2010
, “
Approximate Inference for Disease Mapping With Sparse Gaussian Processes
,”
Stat. Med.
,
29
(
15
), pp.
1580
1607
.10.1002/sim.3895
51.
Quiñonero-Candela
,
J.
, and
Rasmussen
,
C. E.
,
2005
, “
A Unifying View of Sparse Approximate Gaussian Process Regression
,”
J. Mach. Learn. Res.
,
6
, pp.
1939
1959
.https://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf
52.
Saatchi
,
Y.
,
2011
, “
Scalable Inference for Structured Gaussian Process Models
,”
Ph.D. Dissertation
, Cambridge University, Cambridge, UK.https://mlg.eng.cam.ac.uk/pub/pdf/Saa11.pdf
53.
Solin
,
A.
, and
Särkkä
,
S.
,
2020
, “
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
,”
Stat. Comput.
,
30
(
2
), pp.
419
446
.10.1007/s11222-019-09886-w
54.
Gardner
,
J. R.
,
Pleiss
,
G.
,
Bindel
,
D.
,
Weinberger
,
K. Q.
, and
Wilson
,
A. G.
,
2018
, “
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference With GPU Acceleration
,”
32nd International Conference on Neural Information Processing Systems
, Montreal, QC, Canada, Dec. 3–8, pp.
7587
7597
.https://dl.acm.org/doi/pdf/10.5555/3327757.3327857
55.
Lindgren
,
F.
,
Rue
,
H.
, and
Lindström
,
J.
,
2011
, “
An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach
,”
J. R. Stat. Soc. Ser. B
,
73
(
4
), pp.
423
498
.10.1111/j.1467-9868.2011.00777.x
56.
Särkkä
,
S.
,
Solin
,
A.
, and
Hartikainen
,
J.
,
2013
, “
Spatiotemporal Learning Via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering
,”
IEEE Signal Process. Mag.
,
30
(
4
), pp.
51
61
.10.1109/MSP.2013.2246292
57.
Sarkka
,
S.
, and
Hartikainen
,
J.
,
2012
, “
Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression
,”
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics
,
N. D.
Lawrence
, and
M.
Girolami
, eds., Vol. 22,
PMLR
,
La Palma, Canary Islands
, pp.
993
1001
.
58.
Rauch
,
H. E.
,
Tung
,
F.
, and
Striebel
,
C. T.
,
1965
, “
Maximum Likelihood Estimates of Linear Dynamic Systems
,”
AIAA J.
,
3
(
8
), pp.
1445
1450
.10.2514/3.3166
59.
Mbalawata
,
I. S.
,
Särkkä
,
S.
, and
Haario
,
H.
,
2013
, “
Parameter Estimation in Stochastic Differential Equations With Markov Chain Monte Carlo and Non-Linear Kalman Filtering
,”
Comput. Stat.
,
28
(
3
), pp.
1195
1223
.10.1007/s00180-012-0352-y
60.
Plett
,
G. L.
,
2015
,
Battery Management Systems, Volume II: Equivalent-Circuit Methods
,
Artech House Publishers, Norwood, MA
.
61.
Mogensen
,
P. K.
, and
Riseth
,
A. N.
,
2018
, “
Optim: A Mathematical Optimization Package for {Julia}
,”
J. Open Source Software
,
3
(
24
), p.
615
.10.21105/joss.00615
62.
Revels
,
J.
,
Lubin
,
M.
, and
Papamarkou
,
T.
,
2016
, “
Forward-Mode Automatic Differentiation in {J}Ulia
,” e-print
arXiv:1607.07892
.10.48550/arXiv.1607.07892
63.
Jöst
,
D.
,
Ringbeck
,
F.
,
Blömeke
,
A.
, and
Sauer
,
D. U.
,
2021
, “
Timeseries Data of a Drive Cycle Aging Test of 28 High Energy NCA/C+Si Round Cells of Type 18650
,”
Institut für Stromrichtertechnik und Elektrische Antriebe
, Aachen, Germany.10.18154/RWTH-2021-02814
64.
Steinhardt
,
M.
,
Gillich
,
E. I.
,
Rheinfeld
,
A.
,
Kraft
,
L.
,
Spielbauer
,
M.
,
Bohlen
,
O.
, and
Jossen
,
A.
,
2021
, “
Low-Effort Determination of Heat Capacity and Thermal Conductivity for Cylindrical 18650 and 21700 Lithium-Ion Cells
,”
J. Energy Storage
,
42
, p.
103065
.10.1016/j.est.2021.103065
65.
Carlson
,
R. E.
, and
Fritsch
,
F. N.
,
1980
, “
Monotone Piecewise Cubic Interpolation
,”
SIAM J Numer. Anal.
,
17
(
2
), pp.
238
246
.10.1137/0717021
66.
Reniers
,
J. M.
,
Mulder
,
G.
, and
Howey
,
D. A.
,
2019
, “
Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3189
A3200
.10.1149/2.0281914jes
67.
Kirkaldy
,
N.
,
Samieian
,
M. A.
,
Offer
,
G. J.
,
Marinescu
,
M.
, and
Patel
,
Y.
,
2022
, “
Lithium-Ion Battery Degradation: Measuring Rapid Loss of Active Silicon in Silicon-Graphite Composite Electrodes
,”
ACS Appl. Energy Mater.
, 5(11), pp.
13367
13376
.10.1021/acsaem.2c02047
68.
Ai
,
W.
,
Kirkaldy
,
N.
,
Jiang
,
Y.
,
Offer
,
G.
,
Wang
,
H.
, and
Wu
,
B.
,
2022
, “
A Composite Electrode Model for Lithium-Ion Batteries With Silicon/Graphite Negative Electrodes
,”
J. Power Sources
,
527
(Dec. 2021), p.
231142
.10.1016/j.jpowsour.2022.231142
69.
Lin
,
J.
,
Chu
,
H. N.
,
Howey
,
D. A.
, and
Monroe
,
C. W.
,
2022
, “
Multiscale Coupling of Surface Temperature With Solid Diffusion in Large Lithium-Ion Pouch Cells
,”
Commun. Eng.
,
1
(
1
), pp.
1
10
.10.1038/s44172-022-00005-8
70.
Newman
,
J. S.
, and
Tobias
,
C. W.
,
1962
, “
Theoretical Analysis of Current Distribution in Porous Electrodes
,”
J. Electrochem. Soc.
,
109
(
12
), p.
1183
.10.1149/1.2425269
71.
Girard
,
A.
,
Rasmussen
,
C. E.
,
Candela
,
J. Q.
, and
Murray-Smith
,
R.
,
2003
, “
Gaussian Process Priors With Uncertain Inputs Application to Multiple-Step Ahead Time Series Forecasting
,” Advances in Neural Information Processing Systems 15 (
NIPS2002
), Vancouver, BC, Canada, Dec. 9–14, pp.
9
14
.https://www.dcs.gla.ac.uk/~rod/publications/GirRasMur02-TR-2002-119.pdf
72.
Quinonero-Candela
,
J.
,
Girard
,
A.
, and
Rasmussen
,
C.
,
2003
, “
Prediction at an Uncertain Input for Gaussian Processes and Relevance Vector Machines Application to Multiple-Step Ahead Time-Series Forecasting
,” Technical University of Denmark, Kopenhagen, Denmark, Report No.
IMM-2003-18
.https://hdl.handle.net/11858/00-001M-0000-0013-DDF6-7
73.
Särkkä
,
S.
,
2013
,
Bayesian Filtering and Smoothing
,
Cambridge University Press, Cambridge, UK
.
You do not currently have access to this content.