Abstract

Metal peeling refers to the process of forming a thin metal strip from the surface of a rotating feedstock using controlled material removal—machining under an applied strip tension. In this paper, the mechanics of strip formation process is described, while emphasizing the role of strip tension in ensuring uniformity and quality of the peeled strip. This includes an analysis of the deformation history in the peeling zone and the transport dynamics of the strip as it moves from the cutting edge to the coiler. Using conservation laws, governing equations for strip tension and velocity that incorporate dynamic spatiotemporal interactions between peeling and transport processes are developed. Experimental demonstration includes the setup of a lab-scale prototype metal peeling system designed to validate the proposed dynamic model describing the strip transport behavior and control approach. Peeling experiments are performed with steel to evaluate the proposed control approach. Comparisons between two control strategies, with and without tension feedback, are presented and discussed. The importance of real-time tension control for mitigating strip thickness variations and improving other dimensional features of the strip such as flatness and edge waviness is also briefly discussed.

References

1.
Semiatin
,
S.
, ed.,
2005
,
ASM Handbook Volume 14A: Metalworking: Bulk Forming
,
ASM International
,
Materials Park, OH
.
2.
Roberts
,
W.
,
1983
,
Hot Rolling of Steel
,
CRC Press
, Boca Raton, FL.
3.
Fruehan
,
R.
,
Fortini
,
O.
,
Paxton
,
H.
, and
Brindle
,
R.
,
2000
, “
Theoretical Minimum Energies to Produce Steel for Selected Conditions
,”
U.S. OSTI Technical Report
, Pittsburgh, PA.https://www.osti.gov/servlets/purl/769470
4.
Junker
,
O.
,
1929
, “
Method for Manufacturing Metal Sheets and Strips
,” U.S. Patent No. 1,701,889.
5.
Shaw
,
M.
, and
Hoshi
,
T.
,
1976
, “
A New Method of Manufacturing Wire
,”
Proceedings of the 16th International Machine Tool Design and Research Conference
, Manchester, UK, Sept. 10–12, pp.
459
465
.10.1007/978-1-349-81544-9_61
6.
Middlemiss
,
A.
,
Hague
,
D.
, and
Gleave
,
M.
,
1982
, “
Strip Production by Peeling
,”
Met. Technol.
,
9
(
1
), pp.
413
418
.10.1179/030716982803286322
7.
Brown
,
R.
,
1989
, “
Strip Fabrication Using Peeling Techniques
,”
Mater. Manuf. Processes
,
4
(
4
), pp.
467
481
.10.1080/10426918908956310
8.
Vigor
,
C. W.
, and
Leibring
,
W.
,
1973
, “
Metal Peeling for Production of Stainless Steel Foil for Gas Turbine Regenerators
,”
SAE Trans.
,
82
, pp.
435
440
.https://www.jstor.org/stable/44716324
9.
Middlemiss
,
A.
, and
Malkani
,
D. T.
,
1977
, “
Manufacture of Metal Strip
,” U.S. Patent No. 4213231A.
10.
Childs
,
T.
, and
Walters
,
M.
,
1986
, “
Machining With Applied Chip Tension—Part II: Experiments
,”
Int. J. Mech. Sci.
,
28
(
11
), pp.
769
779
.10.1016/0020-7403(86)90023-8
11.
De Chiffre
,
L.
,
1983
, “
Extrusion Cutting of Brass Strips
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2–3
), pp.
141
151
.10.1016/0020-7357(83)90013-6
12.
Moscoso
,
W.
,
2008
, “
Severe Plastic Deformation and Nanostructured Materials by Large Strain Extrusion Machining
,”
Ph.D. thesis
,
Purdue University
, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI3330564/
13.
Sagapuram
,
D.
,
Efe
,
M.
,
Moscoso
,
W.
,
Chandrasekar
,
S.
, and
Trumble
,
K. P.
,
2013
, “
Controlling Texture in Magnesium Alloy Sheet by Shear-Based Deformation Processing
,”
Acta Mater.
,
61
(
18
), pp.
6843
6856
.10.1016/j.actamat.2013.07.063
14.
Sagapuram
,
D.
,
Kustas
,
A.
,
Dale Compton
,
W.
,
Tumble
,
K.
, and
Chandrasekar
,
S.
,
2015
, “
Direct Single-Stage Processing of Lightweight Alloys Into Sheet by Hybrid Cutting-Extrusion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051002
.10.1115/1.4031022
15.
Zhang
,
F.
, and
De Chiffre
,
L.
,
1987
, “
Effect of Applied Tension on Quality of Brass Strip Manufactured by Extrusion Cutting
,”
CIRP Ann.
,
36
(
1
), pp.
53
56
.10.1016/S0007-8506(07)62552-9
16.
King
,
D.
,
1969
, “
The Mathematical Model of a Newspaper Press
,”
Newspaper Tech.
,
1
, pp.
3
7
.
17.
Brandenburg
,
G.
,
1976
, “
New Mathematical Models for Web Tension and Register Error
,”
Third International IFAC Conference on Instrumentation and Automation in the Paper
, Brussels, Belgium, May 24–26.
18.
Whitworth
,
D. P. D.
, and
Harrison
,
M.
,
1983
, “
Tension Variations in Pliable Material in Production Machinery
,”
Appl. Math. Modell.
,
7
(
3
), pp.
189
196
.10.1016/0307-904X(83)90008-2
19.
Young
,
G. E.
, and
Reid
,
K. N.
,
1993
, “
Lateral and Longitudinal Dynamic Behavior and Control of Moving Webs
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
309
317
.10.1115/1.2899071
20.
Pagilla
,
P. R.
,
Siraskar
,
N. B.
, and
Dwivedula
,
R. V.
,
2007
, “
Decentralized Control of Web Processing Lines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
106
117
.10.1109/TCST.2006.883345
21.
Seshadri
,
A.
, and
Pagilla
,
P. R.
,
2010
, “
Optimal Web Guiding
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
1
), p.
011006
.10.1115/1.4000074
22.
Perduková
,
D.
,
Fedor
,
P.
,
Fedák
,
V.
, and
Padmanaban
,
S.
,
2019
, “
Lyapunov Based Reference Model of Tension Control in a Continuous Strip Processing Line With Multi-Motor Drive
,”
Electronics
,
8
(
1
), p.
60
.10.3390/electronics8010060
23.
Hu
,
Y.
,
Sun
,
J.
,
Chen
,
S. Z.
,
Zhang
,
X.
,
Peng
,
W.
, and
Zhang
,
D.
,
2020
, “
Optimal Control of Tension and Thickness for Tandem Cold Rolling Process Based on Receding Horizon Control
,”
Ironmaking Steelmaking
,
47
(
6
), pp.
606
616
.10.1080/03019233.2019.1615813
24.
Akil
,
A.
, and
Rabbah
,
N.
,
2024
, “
A Nonlinear Design Method of Robust PI Control by Using Adaptive Backstepping Control for Web Winding System of Reversible Cold Rolling Mill
,”
Int. J. Adv. Manuf. Technol.
,
132
(
7–8
), pp.
3251
3266
.10.1007/s00170-024-13446-6
25.
Liu
,
L.
,
Shao
,
N.
,
Lin
,
M.
, and
Fang
,
Y.
,
2019
, “
Hamilton-Based Adaptive Robust Control for the Speed and Tension System of Reversible Cold Strip Rolling Mill
,”
Int. J. Adapt. Control Signal Process.
,
33
(
4
), pp.
626
643
.10.1002/acs.2977
26.
Gaber
,
A.
,
Elnaggar
,
M.
, and
Fattah
,
H. A.
,
2022
, “
Looper and Tension Control in Hot Strip Finishing Mills Based on Different Control Approaches
,”
J. Eng. Appl. Sci.
,
69
(
1
), p.
100
.10.1186/s44147-022-00145-w
27.
Shaw
,
M.
,
1984
,
Metal Cutting Principles
,
Clarendon Press, Oxford Science Publications
, Oxford, UK.
28.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M'Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.10.1115/1.4047869
29.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.10.1063/1.1707586
30.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.10.1115/1.4010357
31.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
, UK.
32.
Nakayama
,
K.
,
1964
, “
Effects of Tension Applied to Chip During Metal-Cutting: Chip-Pulling Cutting
,”
Bull. Fac. Eng., Yokohama Natl. Univ.
,
13
, pp.
7
16
.
33.
Walters
,
M.
, and
Childs
,
T.
,
1984
, “
The Strip Peeling of Steels
,”
Proceedings of the 24th International Machine Tool Design and Research Conference
,
Manchester, UK, Aug. 31–Sept. 1
, pp.
127
134
.10.1007/978-1-349-81247-9_18
34.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A New Approach
,”
J. Mech. Phys. Solids
,
3
(
1
), pp.
47
53
.10.1016/0022-5096(54)90038-1
35.
Kobayashi
,
S.
, and
Thomsen
,
E. G.
,
1962
, “
Metal-Cutting Analysis—I: Re-Evaluation and New Method of Presentation of Theories
,”
ASME J. Eng. Ind.
,
84
(
1
), pp.
63
70
.10.1115/1.3667440
36.
Armarego
,
E.
, and
Brown
,
R.
,
1969
,
The Machining of Metals
,
Prentice Hall
, Hoboken, NJ.
37.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London, A: Math. Phys. Sci.
,
360
(
1703
), pp.
587
610
.10.1098/rspa.1978.0087
38.
Finnie
,
I.
, and
Wolak
,
J.
,
1963
, “
Use of Chip Tension to Obtain a Stress-Strain Curve From Metal Mutting Tests
,”
ASME J. Eng. Ind.
,
85
(
4
), pp.
351
355
.10.1115/1.3669889
39.
Lu
,
Y.
, and
Pagilla
,
P. R.
,
2013
, “
Modeling the Effects of Heat Transfer Processes on Material Strain and Tension in Roll to Roll Manufacturing
,”
ASME
Paper No. DSCC2013-4075.10.1115/DSCC2013-4075
40.
Jabbar
,
K. A.
, and
Pagilla
,
P. R.
,
2018
, “
Modeling and Analysis of Web Span Tension Dynamics Considering Thermal and Viscoelastic Effects in Roll-to-Roll Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051005
.10.1115/1.4038888
41.
Pagilla
,
P. R.
,
King
,
E. O.
,
Dreinhoefer
,
L. H.
, and
Garimella
,
S. S.
,
2000
, “
Robust Observer-Based Control of an Aluminum Strip Processing Line
,”
IEEE Trans. Ind. Appl.
,
36
(
3
), pp.
865
870
.10.1109/28.845063
42.
Raul
,
P. R.
,
2015
, “
Design and Analysis of Feedback and Feedforward Control Systems for Web Tension in Roll-to-Roll Manufacturing
,”
Ph.D. thesis
,
Oklahoma State University
, Stillwater, OK.https://core.ac.uk/download/pdf/215236212.pdf
43.
Viswanathan
,
K.
,
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
Shear Bands in Materials Processing: Understanding the Mechanics of Flow Localization From Zener's Time to the Present
,”
ASME Appl. Mech. Rev.
,
72
(
6
), p.
060802
.10.1115/1.4049353
44.
Yadav
,
S.
,
Chawla
,
H.
, and
Sagapuram
,
D.
,
2024
, “
In Situ Observations of Shear Localization and Fracture in Machining
,”
ASME
Paper No. MSEC2024-124723.10.1115/MSEC2024-124723
45.
Roisum
,
D. R.
,
Walker
,
T. J.
, and
Jones
,
D. P.
,
2021
,
The Web Handling Handbook
,
DEStech Publications
, Lancaster, PA.
46.
Branca
,
C.
,
Pagilla
,
P. R.
, and
Reid
,
K. N.
,
2013
, “
Governing Equations for Web Tension and Web Velocity in the Presence of Nonideal Rollers
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011018
.10.1115/1.4007974
You do not currently have access to this content.