Abstract

Self-optimizing control (SOC) aims to achieve near-optimal operation regardless of variation in disturbances. For constrained operation, the model-based SOC has been solved as an explicit model predictive control (MPC) problem, where the changes in active constraint sets under large variations in disturbance inputs can be determined via parametric programing. For constrained SOC design with historical data only, this paper presents an extended work for a data-driven method that Zhao et al. proposed (2022 “Global Self-Optimizing Control With Data-Driven Optimal Selection of Controlled Variables With Application to Chiller Plant”, ASME J. Dyn. Sys., Meas., Control., 144(2), p. 021008.) for obtaining global SOC solution. While this work remains to adopt the Koopman subspace model that has been used, the SOC-associated constrained optimization problem is solved by applying the multiparameter quadratic programing technique. The solutions consist of piecewise-affine control laws and active constraint sets that are determined via partitions of the disturbance space. The proposed approach is illustrated with a Modelica simulation model of a chilled-water plant, where minimizing the total power consumption is the economic objective. The results show that the proposed method yields the total power very close to that by an offline genetic algorithm-based global optimization procedure, and substantially better than a best-practice rule-based control strategy. The degree of constraint violations under high cooling load is also smaller with the solution of constrained SOC.

References

1.
Manum
,
H.
, and
Skogestad
,
S.
,
2012
, “
Self-Optimizing Control With Active Set Changes
,”
J. Process Control
,
22
(
5
), pp.
873
883
.10.1016/j.jprocont.2012.02.015
2.
Skogestad
,
S.
,
2000
, “
Plantwide Control: The Search for the Self-Optimizing Control Structure
,”
J. Process Control
,
10
(
5
), pp.
487
507
.10.1016/S0959-1524(00)00023-8
3.
Alstad
,
V.
, and
Skogestad
,
S.
,
2007
, “
Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables
,”
Ind. Eng. Chem. Res.
,
46
(
3
), pp.
846
853
.10.1021/ie060285+
4.
Halvorsen
,
I. J.
,
Skogestad
,
S.
,
Morud
,
J. C.
, and
Alstad
,
V.
,
2003
, “
Optimal Selection of Controlled Variables
,”
Ind. Eng. Chem. Res.
,
42
(
14
), pp.
3273
3284
.10.1021/ie020833t
5.
Ye
,
L.
,
Cao
,
Y.
, and
Yuan
,
X.
,
2015
, “
Global Approximation of Self-Optimizing Controlled Variables With Average Loss Minimization
,”
Ind. Eng. Chem. Res.
,
54
(
48
), pp.
12040
12053
.10.1021/acs.iecr.5b00844
6.
Cao
,
Y.
,
2004
, “
Constrained Self-Optimizing Control Via Differentiation
,”
IFAC Proc.
,
37
(
1
), pp.
63
70
.
7.
Hu
,
W.
,
Umar
,
L. M.
,
Xiao
,
G.
, and
Kariwala
,
V.
,
2012
, “
Local Self-Optimizing Control of Constrained Processes
,”
J. Proccess Control
,
22
(
2
), pp.
488
493
.10.1016/j.jprocont.2011.11.003
8.
Ye
,
L.
,
Cao
,
Y.
,
Li
,
Y.
, and
Song
,
Z.
,
2012
, “
Approximating Necessary Conditions of Optimality as Controlled Variables
,”
Ind. Eng. Chem. Res.
,
45
(
15
), pp.
904
909
.
9.
Girei
,
S. A.
,
Cao
,
Y.
,
Grema
,
A. S.
,
Ye
,
L.
, and
Kariwala
,
V.
,
2014
, “
Data-Driven Self-Optimizing Control
,”
Comput. Aided Chem. Eng.
,
33
, pp.
649
654
.10.1016/B978-0-444-63456-6.50109-5
10.
Girei
,
S. A.
,
Cao
,
Y.
, and
Kokossis
,
A.
,
2014
, “
A Data-Driven Approach for Self-Optimizing Control With Equality Constraints
,”
20th International Conference on Automation and Computing
, Cranfield, UK, Sept. 12, pp.
248
253
.
11.
Grema
,
A. S.
,
Cao
,
Y.
, and
Grema
,
M. B.
,
2018
, “
Data-Driven Self-Optimizing Control: Constrained Optimization Problem
,”
IFE J. Sci.
,
20
(
2
), pp.
273
278
.10.4314/ijs.v20i2.7
12.
Rowley
,
C.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
13.
Brunton
,
S. L.
,
Brunton
,
B. W.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
,”
PloS One
,
11
(
2
), p.
e0150171
.10.1371/journal.pone.0150171
14.
Mezić
,
I.
,
2005
, “
Spectral Properties of Dynamical Systems, Model Reduction and Decompositions
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
309
325
.10.1007/s11071-005-2824-x
15.
Schmid
,
P. J.
, and
Sesterhenn
,
J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
16.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
PNAS
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
17.
Zhao
,
Z.
,
Li
,
Y.
,
Salsbury
,
T. I.
, and
House
,
J. M.
, “
Global Self-Optimizing Control With Data-Driven Optimal Selection of Controlled Variables With Application to Chiller Plant
,”
ASME J. Dyn. Syst. Meas. Control
, 144(2), p. 021008.10.1115/1.4052395
18.
Zhao
,
Z.
,
Li
,
Y.
,
Salsbury
,
T. I.
, and
House
,
J. M.
,
2020
, “
Control Structure Design of Building HVAC Systems Using a Data-Driven Self-Optimizing Control With Active Set Changes
,”
ASME Paper No. DSCC2020-3294.
19.
Kvasnica
,
M.
,
Grieder
,
P.
, and
Baotić
,
M.
,
2004
, “
Multi-Parametric Toolbox (MPT)
,” http://control.ee.ethz.ch/mpt/
20.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-Data Limit
,”
Proc. R. Soc. A
,
474
(
2219
), p.
20180335
.10.1098/rspa.2018.0335
21.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decom-Position: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.10.3934/jcd.2014.1.391
22.
Manum
,
H.
,
Narasimhan
,
S.
, and
Skogestad
,
S.
,
2007
, “
A New Approach to Explicit MPC Using Self-Optimizing Control
,” accessed June 24, 2022, http://www.nt.ntnu.no/users/skoge/publications/2007/
23.
Dassault Systèmes
,
2019
, Dymola: “
Multi-Engineering Modeling and Simulation
,” accessed June 24, 2022, http://www.3ds.com/products/catia/portfolio/dymola
24.
TLK-Thermo GmbH
,
2013
, “
Engineering Service Software for Thermal System
,” accessed June 24, 2022, http://www.tlk-thermo.com/index.php
25.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Pedersen
,
C. O.
, and
Winkelmann
,
F. C.
,
2000
, “
Energy Plus: Energy Simulation Program
,”
ASHRAE J.
,
42
(
4
), pp.
49
56
.
26.
Wilcox
,
S.
,
2008
,
National Renewable Energy Laboratory
, National Solar Radiation Data Base - 1991-2005 Update: Typical Meteorological Year 3, https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
27.
Hanson
,
S.
,
Schwedler
,
M.
, and
Bakkum
,
B.
,
2011
, Trane, Applications Engineering Manual: Chiller System Design and Control, SYS-APM001-EN, accessed June 24, 2022, http://www.tranebelgium.com/files/book-doc/12/fr/12.1hp13yp1.pdf
28.
Armstrong
,
P. R.
,
Jiang
,
W.
,
Winiarski
,
D.
,
Katipamula
,
S.
,
Norford
,
L. K.
, and
Willingham
,
R. A.
,
2009
, “
Efficient Low-Lift Cooling With Radiant Distribution, Thermal Storage, and Variable-Speed Chiller controls - Part I: Component and Subsystem Models
,”
HVACR Res.
,
15
(
2
), pp.
366
400
.10.1080/10789669.2009.10390842
29.
Bishop
,
M.
, March 27,
2012
, “
York Central Tech Talk, Discharge Temperature as Part of a Diagnostic
,” accessed June 24, 2022, https://yorkcentraltechtalk. wordpress.com/2012/03/27/discharge-temperature-as-part-of-a-diagnostic/
30.
Daikin
,
2006
, Daikin Applied, Installation and Maintenance Manual: Water-Cooled Screw Compressor Chillers, epub.
31.
Water-Cooled Centrifugal Chiller
,” LG, Operation and Maintenance Manual, accessed June 24, 2022, https://www.lg.com/global/business/download/resources/sac/OM_MFL68929303_TurboChiller,1StagePtype.pdf
32.
Johnson Controls
,
2019
, “
OptiViewTM Centrifugal Liquid Chiller Operation Manual
,” Johnson Controls, accessed June 24, 2022, https://cgproducts.johnsoncontrols.com/yorkdoc/160.54-o1.pdf
33.
Akima
,
H.
,
1974
, “
A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures
,”
Commun. ACM
,
17
(
1
), pp.
18
20
.10.1145/360767.360779
34.
Hoerl
,
E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.10.1080/00401706.1970.10488634
35.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE International Conference on Robotics & Automation
, New Orleans, LA, Apr. 26-May 1, pp.
284
289
.10.1109/CACSD.2004.1393890
36.
Thieriot
,
H.
,
Nemura
,
M.
,
Fritzson
,
P.
,
Singh
,
R.
,
Kocherry
,
J. J.
, and
Torabzadeh-Tari
,
M.
,
2011
, “
Towards Design Optimization With OpenModelica Emphasizing Parameter Optimization With Genetic Algorithms
,”
8th International Modelica Conference
, Technical Univeristy, Dresden, Germany 63, March 20–22, pp.
756
762
.
37.
Bemporad
,
A.
,
Morari
,
M.
,
Dua
,
V.
, and
Pistikopoulos
,
E. N.
,
2002
, “
The Explicit Linear Quadratic Regulator for Constrained Systems
,”
Automatica
,
38
(
1
), pp.
3
20
.10.1016/S0005-1098(01)00174-1
38.
Pistikopoulos
,
E. N.
,
Dua
,
V.
,
Bozinis
,
N. A.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2002
, “
On-Line Optimization Via Off-Line Parametric Optimization Tools
,”
Comput. Chem. Eng.
,
26
(
2
), pp.
175
185
.10.1016/S0098-1354(01)00739-6
39.
Baotić
,
M.
,
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2008
, “
Efficient on-Line Computation of Constrained Optimal Control
,”
SIAM J. Control Optim.
,
47
(
5
), pp.
2470
2489
.10.1137/060659314
You do not currently have access to this content.