Abstract

This paper studies the design of antisloshing trajectories for application in automatic machines for packaging liquid products, with specific reference to cylindrical containers and emphasis on prescribed motion durations. Different strategies, based on a discrete linear model of the sloshing phenomenon and applicable in real-time, are analyzed to perform antisloshing feedforward control of the container motion: finite impulse response (FIR) filters (input shapers and others), dynamic-model inversion, and infinite impulse response (IIR) filters. Unlike the previous literature, these strategies are applied to highly dynamical motion laws, with maximum accelerations from 4m/s2 to 13m/s2. The effectiveness of the proposed antisloshing trajectories is assessed by experiments.

References

1.
Richter
,
H.
,
2010
, “
Motion Control of a Container With Slosh: Constrained Sliding Mode Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
3
), p.
031002
.10.1115/1.4001329
2.
Grundelius
,
M.
, and
Bernhardsson
,
B.
,
1999
, “
Control of Liquid Slosh in and Industrial Packaging Machine
,”
Proceedings of the 1999 IEEE International Conference on Control Applications
, Vol.
2
, Kohala Coast, HI, Aug. 22–27, pp.
1654
1659
.10.1109/CCA.1999.801220
3.
Grundelius
,
M.
,
2000
, “
Iterative Optimal Control of Liquid Slosh in an Industrial Packaging Machine
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, Vol.
4
, Sydney, NSW, Australia, Dec. 10–15, pp.
3427
3432
.10.1109/CDC.2000.912233
4.
Di Leva
,
R.
,
Carricato
,
M.
,
Gattringer
,
H.
, and
Müller
,
A.
,
2021
, “
Time-Optimal Trajectory Planning for Anti-Sloshing 2-Dimensional Motions of an Industrial Robot
,”
20th International Conference on Advanced Robotics (ICAR 2021)
, Ljubljana, Slovenia, Dec. 6–10, pp.
32
37
.10.1109/ICAR53236.2021.9659383
5.
Yano
,
K.
, and
Terashima
,
K.
,
2005
, “
Sloshing Suppression Control of Liquid Transfer Systems Considering a 3-D Transfer Path
,”
IEEE/ASME Trans. Mechatronics
,
10
(
1
), pp.
8
16
.10.1109/TMECH.2004.839033
6.
Noda
,
Y.
,
Yano
,
K.
,
Horihata
,
S.
, and
Terashima
,
K.
,
2004
, “
Sloshing Suppression Control During Liquid Container Transfer Involving Dynamic Tilting Using Wigner Distribution Analysis
,”
43rd IEEE Conference on Decision and Control (CDC), Nassau
, Bahamas, Dec. 14–17, Vol.
3
, pp.
3045
3052
.10.1109/CDC.2004.1428931
7.
Reinhold
,
J.
,
Amersdorfer
,
M.
, and
Meurer
,
T.
,
2019
, “
A Dynamic Optimization Approach for Sloshing Free Transport of Liquid Filled Containers Using an Industrial Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Macau, China, Nov. 3–8, pp.
2336
2341
.10.1109/IROS40897.2019.8968144
8.
Aribowo
,
W.
,
Yamashita
,
T.
,
Terashima
,
K.
, and
Kitagawa
,
H.
,
2010
, “
Input Shaping Control to Suppress Sloshing on Liquid Container Transfer Using Multi-Joint Robot Arm
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Oct. 18–22, pp.
3489
3494
.10.1109/IROS.2010.5650412
9.
Aribowo
,
W.
,
Yamashita
,
T.
, and
Terashima
,
K.
,
2015
, “
Integrated Trajectory Planning and Sloshing Suppression for Three-Dimensional Motion of Liquid Container Transfer Robot Arm
,”
J. Rob.
,
2015
, pp.
1
15
.10.1155/2015/279460
10.
Pridgen
,
B.
,
Bai
,
K.
, and
Singhose
,
W.
,
2010
, “
Slosh Suppression by Robust Input Shaping
,”
49th IEEE Conference on Decision and Control (CDC)
, Atlanta, GA, Dec. 15–17, pp.
2316
2321
.10.1109/CDC.2010.5717429
11.
Zang
,
Q.
,
Huang
,
J.
, and
Liang
,
Z.
,
2015
, “
Slosh Suppression for Infinite Modes in a Moving Liquid Container
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
217
225
.10.1109/TMECH.2014.2311888
12.
Peter
,
H.
, and
Thomas
,
P.
,
2010
, “
Slosh-Free Positioning of Containers With Liquids and Flexible Conveyor Belt
,”
J. Elect. Eng.
,
61
(
2
), pp.
65
74
.10.2478/v10187-010-0010-y
13.
AlSaibie
,
A.
, and
Singhose
,
W.
,
2013
, “
Experimental Testing of Liquid Slosh Suppression in a Suspended Container With Compound-Pendulum Dynamics
,”
Ninth Asian Control Conference (ASCC)
, Istanbul, June 23–26, pp.
1
6
.10.1109/ASCC.2013.6606200
14.
Alshaya
,
A.
, and
Alghanim
,
K.
,
2020
, “
Command Shaping for Sloshing Suppression of a Suspended Liquid Container
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
12
), p.
121003
.10.1115/1.4047957
15.
Khorshid
,
E.
, and
Al-Fadhli
,
A.
,
2021
, “
Optimal Command Shaping Design for a Liquid Slosh Suppression in Overhead Crane Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
2
), p.
021005
.10.1115/1.4048357
16.
Alshaya
,
A.
, and
Almujarrab
,
D.
,
2021
, “
A Smooth Polynomial Shaped Command for Sloshing Suppression of a Suspended Liquid Container
,”
Trans. Inst. Meas. Control
,
43
(
2
), pp.
278
294
.10.1177/0142331220949304
17.
Huang
,
J.
, and
Xinsheng
,
Z.
,
2018
, “
Control of Three-Dimensional Nonlinear Slosh in Moving Rectangular Containers
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
081016
.10.1115/1.4039278
18.
Melchiorri
,
C.
,
Biagiotti
,
L.
,
Moriello
,
L.
, and
Paoli
,
A.
,
2018
, “
Manipulating Liquids With Robots: A Sloshing-Free Solution
,”
Control Eng. Pract.
,
78
, pp.
129
141
.10.1016/j.conengprac.2018.06.018
19.
Feddema
,
J.
,
Dohrmann
,
C.
,
Parker
,
G.
,
Robinett
,
R.
,
Romero
,
V.
, and
Schmitt
,
D.
,
1997
, “
Control for Slosh-Free Motion of an Open Container
,”
IEEE Control Syst. Mag.
,
17
(
1
), pp.
29
36
.10.1109/37.569711
20.
Guagliumi
,
L.
,
Berti
,
A.
,
Monti
,
E.
, and
Carricato
,
M.
,
2021
, “
A Simple Model-Based Method for Sloshing Estimation in Liquid Transfer in Automatic Machines
,”
IEEE Access
,
9
, pp.
129347
129357
.10.1109/ACCESS.2021.3113956
21.
Di Leva
,
R.
,
Carricato
,
M.
,
Gattringer
,
H.
, and
Müller
,
A.
,
2021
, “
Sloshing Dynamics Estimation for Liquid-Filled Containers Under 2-Dimensional Excitation
,”
10th ECCOMAS Thematic Conference on Multibody Dynamics
, Budapest, Hungary, Dec. 12–15, pp.
80
89
.https://repozitorium.omikk.bme.hu/handle/10890/16810?locale-attribute=en
22.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
, Cambridge, UK.
23.
Bauer
,
H. F.
,
1964
, “
Tables of Zeros of Cross Product Bessel Functions J p ( ξ ) Y p ( k ξ ) J p ( k ξ ) Y p ( ξ ) = 0
,”
Math. Comput.
,
18
(
85
), pp.
128
135
.10.2307/2003415
24.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots
,
Springer
, Heidelberg, Germany.
25.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME, J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
26.
Singhose
,
W.
,
Seering
,
W.
, and
Singer
,
N.
,
1994
, “
Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
654
659
.10.1115/1.2919428
27.
Robinett
,
R.
,
Dohrmann
,
C.
,
Eisler
,
G.
,
Feddema, Parker, G
,
J.
,
Wilson
,
D.
, and
Stokes
,
D.
,
2002
,
Flexible Robot Dynamics and Controls
,
Springer
, New York.
28.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M.
,
1998
,
Digital Control of Dynamic Systems
,
Ellis-Kagle Press
, Half Moon Bay, CA.
29.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2012
, “
Fir Filters for Online Trajectory Planning With Time—And Frequency—Domain Specifications
,”
Control Eng. Pract.
,
20
(
12
), pp.
1385
1399
.10.1016/j.conengprac.2012.08.005
30.
Biagiotti
,
L.
,
Melchiorri
,
C.
, and
Moriello
,
L.
,
2016
, “
Optimal Trajectories for Vibration Reduction Based on Exponential Filters
,”
IEEE Trans. Control Syst. Technol.
,
24
(
2
), pp.
609
622
.10.1109/TCST.2015.2460693
31.
Boscariol
,
P.
, and
Richiedei
,
D.
,
2018
, “
Robust Point-to-Point Trajectory Planning for Non-Linear Underactuated Systems: Theory and Experimental Assessment
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
256
265
.10.1016/j.rcim.2017.10.001
32.
Pridgen
,
B.
,
Bai
,
K.
, and
Singhose
,
W.
,
2013
, “
Shaping Container Motion for Multi-Mode and Robust Slosh Suppression
,”
AIAA J. Spacecr. Rockets
,
50
(
2
), pp.
440
448
.10.2514/1.A32137
You do not currently have access to this content.