Abstract

This paper proposes an automatic time-energy efficient robust control (ATERC) deployment approach for selecting either a near-optimal closed-loop control law or a robust control law based on the requirement of the system. The near-optimal closed-loop control law is designed by applying the population-based sine-cosine algorithm (SCA) to the considered interceptor problem. While the robust control law is formulated by using an artificial time delayed control (TDC) approach. In presence of external disturbances, the ATERC methodology deploys the TDC-based robust guidance law to the interceptor, while in the absence of such uncertainties the SCA-based near-optimal guidance law is applied in order to improve the time-energy minimization. This guidance approach also incorporates input saturation which expands its applicability. Using Lyapunov stability analysis, this work establishes an uniformly ultimately bounded (UUB) stability for the discussed system on application of the proposed control approach. Extensive simulation studies involving nonmaneuvering targets and targets performing bank-to-bank maneuver, affirms the efficiency of the proposed approach.

References

1.
Yuan
,
L. C.-L.
,
1948
, “
Homing and Navigational Courses of Automatic Target-Seeking Devices
,”
J. Appl. Phys.
,
19
(
12
), pp.
1122
1128
.10.1063/1.1715028
2.
Du
,
R.
,
Zou
,
X.
,
Zhou
,
D.
, and
Liu
,
J.
,
2018
, “
Interactive Multiple Model Filter for Tracking a Pursuer With Proportional Navigation Guidance Law
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
081003
.10.1115/1.4039156
3.
Banerjee
,
A.
,
Nabi
,
M.
, and
Raghunathan
,
T.
,
2020
, “
Time-Energy Optimal Guidance Strategy for Realistic Interceptor Using Pseudospectral Method
,”
Trans Inst. Meas. Control
,
42
(
13
), pp.
2361
2371
.10.1177/0142331220910919
4.
Qu
,
P.
,
Shao
,
C.
, and
Zhou
,
D.
,
2015
, “
Finite Time Convergence Guidance Law Accounting for Missile Autopilot
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051014
.10.1115/1.4029241
5.
Raghunathan
,
T.
, and
Ghose
,
D.
,
2010
, “
An Online-Implementable Differential Evolution Tuned All-Aspect Guidance Law
,”
Control Eng. Pract.
,
18
(
10
), pp.
1197
1210
.10.1016/j.conengprac.2010.05.013
6.
Yang
,
Z.
,
Zhou
,
D.
,
Piao
,
H.
,
Zhang
,
K.
,
Kong
,
W.
, and
Pan
,
Q.
,
2020
, “
Evasive Maneuver Strategy for Ucav in Beyond-Visual-Range Air Combat Based on Hierarchical Multi-Objective Evolutionary Algorithm
,”
IEEE Access
,
8
, pp.
46605
46623
.10.1109/ACCESS.2020.2978883
7.
Yang
,
X.-S.
,
2010
,
Nature-Inspired Metaheuristic Algorithms
,
Luniver Press
, Cambridge, UK.
8.
Chai
,
R.
,
Savvaris
,
A.
, and
Chai
,
S.
,
2019
, “
Integrated Missile Guidance and Control Using Optimization-Based Predictive Control
,”
Nonlinear Dyn.
,
96
(
2
), pp.
997
1015
.10.1007/s11071-019-04835-8
9.
Mirjalili
,
S.
,
2016
, “
Sca: A Sine Cosine Algorithm for Solving Optimization Problems
,”
Knowl.-Based Syst.
,
96
, pp.
120
133
.10.1016/j.knosys.2015.12.022
10.
Zarchan
,
P.
,
2012
,
Tactical and Strategic Missile Guidance
,
AIAA, Inc
., Washington, DC.
11.
Shieh
,
C.-S.
,
2004
, “
Tunable h Infinity Robust Guidance Law for Homing Missiles
,”
IEE Proc.-Control Theory Appl.
,
151
(
1
), pp.
103
107
.10.1049/ip-cta:20040065
12.
Jiang
,
H.
,
Chen
,
S.
,
Wang
,
F.
, and
Xiong
,
F.
,
2019
, “
Trajectory Tracking Using Robust Gain-Scheduling Control With a New Independent Variable
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
233
(
1
), pp.
215
225
.10.1177/0954410017728973
13.
Ma
,
B.
,
Wang
,
Z.
, and
Wang
,
Y.
,
2021
, “
Event-Triggered Adaptive Higher-Order Sliding Mode Tracking Control for Steer-by-Wire Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p.
071008
.10.1115/1.4049794
14.
Zhou
,
X.
,
Wang
,
W.
,
Liu
,
Z.
,
Liang
,
C.
, and
Lai
,
C.
,
2019
, “
Impact Angle Constrained Three-Dimensional Integrated Guidance and Control Based on Fractional Integral Terminal Sliding Mode Control
,”
IEEE Access
,
7
, pp.
126857
126870
.10.1109/ACCESS.2019.2939418
15.
Hsia
,
T. C.
, and
Gao
,
L. S.
,
1990
, “
Robot Manipulator Control Using Decentralized Linear Time-Invariant Time-Delayed Joint Controllers
,”
Proceedings, IEEE International Conference on Robotics and Automation,
Cincinnati, OH, May 13–18, Vol.
3
, pp.
2070
2075
.10.1109/ROBOT.1990.126310
16.
Youcef-Toumi
,
K.
, and
Ito
,
O.
,
1988
, “
A Time Delay Controller for Systems With Unknown Dynamics
,”
1988 American Control Conference
, Atlanta, GA, June 15–17, pp.
904
913
.10.23919/ACC.1988.4789852
17.
Lee
,
J.
,
Yoo
,
C.
,
Park
,
Y.-S.
,
Park
,
B.
,
Lee
,
S.-J.
,
Gweon
,
D.-G.
, and
Chang
,
P.-H.
,
2012
, “
An Experimental Study on Time Delay Control of Actuation System of Tilt Rotor Unmanned Aerial Vehicle
,”
Mechatronics
,
22
(
2
), pp.
184
194
.10.1016/j.mechatronics.2012.01.005
18.
Amrr
,
S. M.
,
Banerjee
,
A.
, and
Nabi
,
M.
,
2020
, “
Fault-Tolerant Attitude Control of Small Spacecraft Using Robust Artificial Time Delay Approach
,”
IEEE J. Miniaturization Air Space Syst.
,
1
(
3
), pp.
179
187
.10.1109/JMASS.2020.3022685
19.
Sarkar
,
R.
,
Mukherjee
,
J.
,
Patil
,
D.
, and
Kar
,
I. N.
,
2021
, “
Re-Entry Trajectory Tracking of Reusable Launch Vehicle Using Artificial Delay Based Robust Guidance Law
,”
Adv. Space Res.
,
67
(
1
), pp.
557
570
.10.1016/j.asr.2020.10.006
20.
Jin
,
M.
,
Lee
,
J.
,
Chang
,
P. H.
, and
Choi
,
C.
,
2009
, “
Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control
,”
IEEE Trans Ind. Electron.
,
56
(
9
), pp.
3593
3601
.10.1109/T IE.2009.2024097
21.
Raghunathan
,
T.
, and
Ghose
,
D.
,
2014
, “
Differential Evolution Based 3-d Guidance Law for a Realistic Interceptor Model
,”
Appl. Soft Comput.
,
16
, pp.
20
33
.10.1016/j.asoc.2013.11.017
22.
Shukla
,
U.
, and
Mahapatra
,
P.
,
1990
, “
The Proportional Navigation Dilemma-Pure or True?
,”
IEEE Trans Aerosp. Electron. Syst.
,
26
(
2
), pp.
382
392
.10.1109/7.53445
23.
Sim
,
Y. C.
,
Leng
,
S. B.
, and
Subramaniam
,
V.
,
2000
, “
An All-Aspect Near-Optimal Guidance Law
,”
Dyn. Control
,
10
(
2
), pp.
165
177
.10.1023/A:1008395924656
24.
Banerjee
,
A.
,
un Nabi
,
M.
, and
Kumbasar
,
T.
,
2019
, “
Big Bang Big Crunch Based Near-Optimal Guidance Law for Interceptor Problem
,”
2019 11th International Conference on Electrical and Electronics Engineering (ELECO)
, Bursa, Turkey, Nov. 28–30, pp.
790
794
.10.23919/ELECO47770.2019.8990571
25.
Kennedy
,
J.
,
2010
, “
Particle Swarm Optimization
,”
Encyclopedia Machine Learning
, Springer, Boston, MA, pp.
760
766
.
26.
Banerjee
,
A.
,
Mukherjee
,
J.
,
un Nabi
,
M.
, and
Kar
,
I. N.
,
2021
, “
An Artificial Delay Based Robust Guidance Strategy for an Interceptor With Input Saturation
,”
ISA Trans.
,
109
, pp.
34
48
.10.1016/j.isatra.2020.09.013
27.
Shima
,
T.
,
Idan
,
M.
, and
Golan
,
O. M.
,
2006
, “
Sliding-Mode Control for Integrated Missile Autopilot Guidance
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
250
260
.10.2514/1.14951
28.
Banerjee
,
A.
,
Mukherjee
,
J.
, and
un Nabi
,
M.
,
2020
, “
Time-Energy Efficient Guidance Strategy for a Realistic 3d Interceptor: An Adaptive Robust Time-Delayed Control Approach With Input Saturation
,”
Aerosp. Sci. Technol.
,
104
, p.
106015
.10.1016/j.ast.2020.106015
You do not currently have access to this content.