Abstract

This paper presents a multilevel model-based hierarchical estimation framework for complex thermal management systems of electrified vehicles. System dynamics are represented by physics-based lumped parameter models derived from a graph-based modeling approach. The complexity of the hierarchical models is reduced by applying an aggregation-based model-order reduction technique that preserves the physical correspondence between a reduced-order model and the physical system. This paper also presents a case study in which a hierarchical observer is designed to estimate the dynamics of a candidate system. The hierarchical observer is connected to a previously developed hierarchical controller for closed-loop control, and the closed-loop performance is demonstrated through simulation and real-time experimental results. A comparison between the proposed hierarchical observer and a centralized observer shows the tradeoff between the estimation accuracy and the computational complexity of the two approaches.

References

1.
Madonna
,
V.
,
Giangrande
,
P.
, and
Galea
,
M.
,
2018
, “
Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities
,”
IEEE Trans. Transp. Electr.
,
4
(
3
), pp.
646
659
.10.1109/TTE.2018.2834142
2.
Sarlioglu
,
B.
, and
Morris
,
C. T.
,
2015
, “
More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft
,”
IEEE Trans. Transp. Electr.
,
1
(
1
), pp.
54
64
.10.1109/TTE.2015.2426499
3.
Rosero
,
J. A.
,
Ortega
,
J. A.
,
Aldabas
,
E.
, and
Romeral
,
L.
,
2007
, “
Moving Towards a More Electric Aircraft
,”
IEEE Aerosp. Electron. Syst. Mag.
,
22
(
3
), pp.
3
9
.10.1109/MAES.2007.340500
4.
IEA
,
2019
, “
Global EV Outlook 2019
,”
IEA
,
Paris, France
.
5.
Doty
,
J.
,
Yerkes
,
K.
,
Byrd
,
L.
,
Murthy
,
J.
,
Alleyne
,
A.
,
Wolff
,
M.
,
Heister
,
S.
, and
Fisher
,
T. S.
,
2017
, “
Dynamic Thermal Management for Aerospace Technology: Review and Outlook
,”
J. Thermophys. Heat Transfer
,
31
(
1
), pp.
86
98
.10.2514/1.T4701
6.
Doman
,
D. B.
,
2016
, “
Fuel Flow Control for Extending Aircraft Thermal Endurance—Part I: Underlying Principles
,”
AIAA Paper No. 2016-1621
. 10.2514/6.2016-1621
7.
Doman
,
D. B.
,
2016
, “
Fuel Flow Control for Extending Aircraft Thermal Endurance—Part II: Closed Loop Control
,”
AIAA Paper No. 2016-1622
. 10.2514/6.2016-1622
8.
Bodie
,
M.
, and
Wolff
,
M.
,
2010
, “
Robust Optimization of an Aircraft Power Thermal Management System
,”
AIAA Paper No. 2010-7086
. 10.2514/6.2010-7086
9.
Fischer
,
T.
,
Götz
,
F.
,
Berg
,
L. F.
,
Kollmeier
,
H.-P.
, and
Gauterin
,
F.
,
2015
, “
Model-Based Development of a Holistic Thermal Management System for an Electric Car With a High Temperature Fuel Cell Range Extender
,”
Proceedings of 11th International Modelica Conference Versailles
, Vol.
118
,
Versailles, France
, Sept. 21–23, pp.
127
133
10.3384/ecp15118127
10.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2016
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
106
128
.10.1016/j.rser.2016.05.033
11.
Park
,
S.
, and
Jung
,
D.
,
2010
, “
Design of Vehicle Cooling System Architecture for a Heavy Duty Series-Hybrid Electric Vehicle Using Numerical System Simulations
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), pp.
1
11
.10.1115/1.4000587
12.
Fang
,
R.
,
Jiang
,
W.
,
Khan
,
J.
, and
Dougal
,
R.
,
2011
, “
Thermal Modeling and Simulation of the Chilled Water System for Future All Electric Ship
,”
2011 IEEE Electric Ship Technology Symposium
(
ESTS 2011
),
Alexandria, VA
, Apr. 10–13, pp.
265
271
10.1109/ESTS.2011.5770879
13.
Thongam
,
J. S.
,
Tarbouchi
,
M.
,
Okou
,
A. F.
,
Bouchard
,
D.
, and
Beguenane
,
R.
,
2013
, “
All-Electric ships—A Review of the Present State of the Art
,”
Eighth International Conference, Exhibition on Ecology Vehicles and Renewable Energies
(
EVER 2013
),
Monte Carlo, Monaco
, Mar. 27–30, pp.
1
8
.10.1109/EVER.2013.6521626
14.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
.10.1115/1.4043203
15.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-McPherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Cabin and Battery Thermal Management of Connected and Automated HEVs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
, pp.
1
16
.10.1109/TCST.2019.2923792
16.
Kennel
,
F.
,
Gorges
,
D.
, and
Liu
,
S.
,
2013
, “
Energy Management for Smart Grids With Electric Vehicles Based on Hierarchical MPC
,”
IEEE Trans. Ind. Inf.
,
9
(
3
), pp.
1528
1537
.10.1109/TII.2012.2228876
17.
Pangborn
,
H. C.
,
Koeln
,
J. P.
,
Williams
,
M. A.
, and
Alleyne
,
A. G.
,
2018
, “
Experimental Validation of Graph-Based Hierarchical Control for Thermal Management
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
10
), p.
101016
.10.1115/1.4040211
18.
Koeln
,
J. P.
,
Williams
,
M. A.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2016
, “
Experimental Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems
,”
ASME Paper No. DSCC2016-9782
. 10.1115/DSCC2016-9782
19.
Docimo
,
D. J.
, and
Alleyne
,
A. G.
,
2018
, “
Electro-Thermal Graph-Based Modeling for Hierarchical Control With Application to an Electric Vehicle
,”
Conference on Control Technology and Applications
,
Copenhagen, Denmark
, Aug. 21–24, INSPEC Accession No. 18198936. 10.1109/CCTA.2018.8511390
20.
Docimo
,
D. J.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2018
, “
Hierarchical Control for Electro-Thermal Power Management of an Electric Vehicle Powertrain
,”
ASME Paper No. DSCC2018-9215
. 10.1115/DSCC2018-9215
21.
H. C
,
P.
,
2019
, “
Hierarchical Control for Multi-Domain Coordination of Vehicle Energy Systems With Switched Dynamics
,” Ph.D dissertation,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
22.
Tannous
,
P. J.
,
Docimo
,
D. J.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2019
, “
Hierarchical Estimation for Complex Multi-Domain Dynamical Systems
,”
American Control Conference
(
ACC
),
Philadelphia, PA
, INSPEC Accession No. 18954903. 10.23919/ACC.2019.8814330
23.
Van Cutsem
,
T.
,
Horward
,
J. L.
, and
Ribbens-Pavella
,
M.
,
1981
, “
A Two-Level Static State Estimator for Electric Power Systems
,”
IEEE Trans. Power Appar. Syst.
,
PAS-100
(
8
), pp.
3722
3732
.10.1109/TPAS.1981.317015
24.
Lo
,
K. L.
,
Salem
,
M. M.
,
McColl
,
R. D.
, and
Moffatt
,
A. M.
,
1988
, “
Two-Level State Estimation for Large Power System—Part 1: Algoirthm
,”
IEEE Proc. C, Gener. Transm. Distrib.
,
135
(
4
), pp.
299
308
.10.1049/ip-c.1988.0041
25.
Iwamoto
,
S.
,
Kusano
,
M.
, and
Quintana
,
V. H.
,
1989
, “
Hierarchical State Estimation Using a Fast Rectangular-Coordinate Method [Power System Analysis Computing]
,”
Power Syst. IEEE Trans
,
4
(
3
), pp.
870
880
.10.1109/59.32574
26.
Van Cutsem
,
T.
, and
Ribbens-Pavella
,
M.
,
1983
, “
Critical Survey of Hierarchical Methods for State Estimation of Electric Power Systems
,”
IEEE Trans. Power Appar. Syst
,
PAS-102
(
10
), pp.
3415
3424
.10.1109/TPAS.1983.317838
27.
Korres
,
G. N.
,
2011
, “
A Distributed Multiarea State Estimation
,”
IEEE Trans. Power Syst.
,
26
(
1
), pp.
73
84
.10.1109/TPWRS.2010.2047030
28.
Zhao
,
L.
, and
Abur
,
A.
,
2005
, “
Multiarea State Estimation Using Synchronized Phasor Measurements
,”
IEEE Trans. Power Syst.
,
20
(
2
), pp.
611
617
.10.1109/TPWRS.2005.846209
29.
Gómez-Expósito
,
A.
,
Abur
,
A.
,
de la
,
A.
,
Jaén
,
V.
, and
Gómez
,
C.
,
2011
, “
A Multilevel State Estimation Paradigm for Smart Grids
,”
Proc. IEEE
,
99
(
6
), pp.
952
976
.10.1109/JPROC.2011.2107490
30.
Lakshminarasimhan
,
S.
, and
Girgis
,
A. A.
,
2007
, “
Hierarchical State Estimation Applied to Wide-Area Power Systems
,”
IEEE Power Engineering Society General Meeting
,
Clemson, SC
, Mar. 14–17, INSPEC Accession No. 10290219.10.1109/PES.2007.385618
31.
Li
,
R.
,
Corripio
,
A. B.
,
Henson
,
M. A.
, and
Kurtz
,
M. J.
,
2004
, “
On-Line State and Parameter Estimation of EPDM Polymerization Reactors Using a Hierarchical Extended Kalman Filter
,”
J. Process Control
,
14
(
8
), pp.
837
852
.10.1016/j.jprocont.2004.03.002
32.
Zonouz
,
S. A.
, and
Sanders
,
W. H.
,
2008
, “
A Kalman-Based Coordination for Hierarchical State Estimation: Algorithm and Analysis
,”
Proceedings of the 41st Annual Hawaii International Conference on System Sciences
(
HICSS 2008
), Jan. 7–10, Waikoloa, HI, INSPEC Accession No. 9904576.10.1109/HICSS.2008.23
33.
Xu, R., and Wunsch, D.
,
2005
, “
Survey of Clustering  Algorithms
,”
IEEE Trans. Neural Netw.
,
16
(
3
), pp.
645
678
.10.1109/TNN.2005.845141
34.
Ji
,
Y.
, and
Geroliminis
,
N.
,
2012
, “
On the Spatial Partitioning of Urban Transportation Networks
,”
Transp. Res. Part B Methodol.
,
46
(
10
), pp.
1639
1656
.10.1016/j.trb.2012.08.005
35.
Schaeffer
,
S. E.
,
2007
, “
Graph Clustering
,”
Comput. Sci. Rev.
,
1
(
1
), pp.
27
64
.10.1016/j.cosrev.2007.05.001
36.
Guénoche
,
A.
,
Hansen
,
P.
, and
Jaumard
,
B.
,
1991
, “
Efficient Algorithms for Divisive Hierarchical Clustering With the Diameter Criterion
,”
J. Classif.
,
8
(
1
), pp.
5
30
.10.1007/BF02616245
37.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
, 1st ed.,
Springer Science+Business Media
,
New York
.
38.
Böker
,
G.
, and
Lunze
,
J.
,
2002
, “
Stability and Performance of Switching Kalman Filters
,”
Int. J. Control
,
75
(
16–17
), pp.
1269
1281
.10.1080/0020717021000023708
39.
Valade
,
A.
,
Acco
,
P.
,
Grabolosa
,
P.
, and
Fourniols
,
J. Y.
,
2017
, “
A Study About Kalman Filters Applied to Embedded Sensors
,”
Sensors
,
17
(
12
), pp.
2810
2818
.10.3390/s17122810
You do not currently have access to this content.