This paper proposes a simple reduced-order model for a general flexure-guided piezoelectrically actuated nanopositioner and employs it to derive the upper limit of achievable bandwidth for a specified travel range. It is shown that flexure-based motion amplification enables achieving higher bandwidth than that obtained when they are used for guiding motion alone. The optimal amplification and the corresponding maximum bandwidth are studied as functions of the mass carried by the positioner and the stiffness of the flexure. Simple analytical expressions are derived for the two in case of stiff flexures carrying small mass. The proposed reduced-order model is validated by means of finite element analysis.

References

1.
Kodera
,
N.
,
Yamamoto
,
D.
,
Ishikawa
,
R.
, and
Ando
,
T.
,
2010
, “
Video Imaging of Walking Myosin V by High-Speed Atomic Force Microscopy
,”
Nature
,
468
(
7320
), pp.
72
76
.
2.
Chen
,
H.
,
Xi
,
N.
, and
Li
,
G.
,
2006
, “
CAD-Guided Automated Nanoassembly Using Atomic Force Microscopy-Based Nonrobotics
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
208
217
.
3.
Zhang
,
Z. M.
,
An
,
Q.
,
Li
,
J. W.
, and
Zhang
,
W. J.
,
2012
, “
Piezoelectric Friction–Inertia Actuator—A Critical Review and Future Perspective
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5
), pp.
669
685
.
4.
Yong
,
Y. K.
,
Moheimani
,
S. O. R.
,
Kenton
,
B. J.
, and
Leang
,
K. K.
,
2012
, “
Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
5.
Fleming
,
K. K.
, and
Leang
,
A. J.
,
2014
,
Design, Modeling and Control of Nanopositioning Systems
,
Springer
,
Cham, Switzerland
.
6.
Fleming
,
A. J.
,
2008
, “
Techniques and Considerations for Driving Piezoelectric Actuators at High Speeds
,”
Proc. SPIE
,
6926
, p.
69260E
.
7.
Fleming
,
A. J.
,
Wills
,
A. G.
, and
Moheimani
,
S. O. R.
,
2008
, “
Sensor Fusion for Improved Control of Piezoelectric Tube Scanners
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1265
1276
.
8.
Gao
,
P.
,
Swei
,
S.
, and
Yuan
,
Z.
,
1999
, “
A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges
,”
Nanotechnology
,
10
(
4
), pp.
394
398
.
9.
Kim
,
D.
,
Kang
,
D.
,
Shim
,
J.
,
Song
,
I.
, and
Gweon
,
D.
,
2005
, “
Optimal Design of a Flexure Hinge-Based XYZ Atomic Force Microscopy Scanner for Minimizing Abbe Errors
,”
Rev. Sci. Instrum.
,
76
(
7
), p.
073706
.
10.
Schitter
,
G.
,
Åstrom
,
K. J.
,
DeMartini
,
B.
,
Thurner
,
P. J.
,
Turner
,
K. L.
, and
Hansma
,
P. K.
,
2007
, “
Design and Modeling of a High-Speed AFM Scanner
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
906
915
.
11.
Yong
,
Y. K.
,
Aphale
,
S.
, and
Moheimani
,
S. O. R.
,
2009
, “
Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.
12.
Kenton
,
B. J.
, and
Leang
,
K. K.
,
2012
, “
Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
356
369
.
13.
Wang
,
Q.
,
Li
,
J.
,
Liu
,
Y. F.
,
Qian
,
Z. Q.
,
Cao
,
L.
, and
Zhang
,
W. J.
,
2015
A Systematic and Rational Design Approach for Compliant Amplification Mechanisms
,”
IEEE 10th Conference on Industrial Electronics and Applications
(
ICIEA
), Auckland, New Zealand, June 15–17, pp.
74
78
.
14.
Croft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
,
2001
, “
Creep, Hysteresis and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
1
), pp.
35
43
.
You do not currently have access to this content.