Parallel kinematic machines (PKMs) have been proposed as an alternative solution for high-speed machining (HSM) tool for several years. However, their dynamic characteristics are still considered an issue for practice application. Considering the three prismatic–revolute–spherical (3-PRS) PKM design as a typical compliant parallel device, this paper applies substructure synthesis strategy to establish an analytical elastodynamic model for the device. The proposed model considers the effects of component compliances and kinematic pair contraints so that it can predict the dynamic characteristics of the 3-PRS PKM. Based on eigenvalue decomposition of the characteristic equations, the natural frequencies and corresponding vibration modes at a typical configuration are analyzed and verified by numerical simulations. With an algorithm of workspace partitions combining with eigenvalue decompositions, the distributions of lower-order natural frequencies throughout the workspace are computed to reveal a strong dependency of dynamic characteristics on mechanism's configurations. In addition, the effects of the radii of the platform and the base along with the cross section of the limb on lower-order natural frequencies are analyzed to provide useful information during the early design stage. At last, frequency response analysis for the tool center point (TCP) is worked out based on the elastodynamic model to provide primary guideline for cutting chatter avoidance.

References

1.
Hennes
,
N.
, and
Staimer
,
D.
,
2004
, “
Application of PKM in Aerospace Manufacturing—High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER
,”
4th Chemnitz Parallel Kinematics Seminar
, Chemnitz, Germany, Apr. 20–21, pp.
557
577
.
2.
Tsai
,
M. S.
,
Shiau
,
T. N.
,
Tsai
,
Y. J.
, and
Chang
,
T. H.
,
2003
, “
Direct Kinematic Analysis of a 3-PRS Parallel Mechanism
,”
Mech. Mach. Theory
,
38
(
1
), pp.
71
83
.
3.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2007
, “
Kinematic Analysis of a 3-PRS Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
23
(
4
), pp.
395
408
.
4.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2004
, “
Kinematics and Stiffness Analysis for a General 3-PRS Spatial Parallel Mechanism
,” ROMANSY, Montreal, Canada, June 14–18, pp.
26
29
.
5.
Pond
,
G. T.
, and
Carretero
,
J. A.
,
2004
, “
Kinematic Analysis and Workspace Determination of the Inclined PRS Parallel Manipulator
,”
15th CISM—IFToMM Symposium on Robot Design, Dynamics and Control
, Saint-Hubert, QC, pp.
1
6
.
6.
Geoffrey
,
P.
, and
Carretero
,
G. A.
,
2006
, “
Formulating Jacobian Matrices for Dexterity Analysis of Parallel Mechanism
,”
Mech. Mach. Theory
,
41
(12), pp.
1505
1519
.
7.
Li
,
Q. C.
,
Chen
,
Z.
,
Chen
,
Q. H.
,
Wu
,
C. Y.
, and
Hu
,
X. D.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
389
396
.
8.
Nigus
,
H.
,
2014
, “
Semi-Analytical Approach for Stiffness Estimation of 3-DOF PKM
,”
Modern Mech. Eng.
,
4
(
2
), pp.
108
118
.
9.
Huang
,
T.
,
Zhao
,
X. Y.
, and
Whitehouse
,
D. J.
,
2002
, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
50
58
.
10.
Li
,
Y. G.
,
Song
,
Y. M.
,
Feng
,
Z. Y.
, and
Zhang
,
C.
,
2007
, “
Inverse Dynamics of 3-PRS Parallel Mechanism by Newton-Euler Formulation
,”
Acta Aeronaut. Astronaut. Sin.
,
28
(
5
), pp.
1210
1215
.
11.
Xi
,
F. F.
,
Angelico
,
O.
, and
Sinatra
,
R.
,
2005
, “
Tripod Dynamics and Its Inertia Effect
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
144
149
.
12.
Wiens
,
G. J.
,
Shamblin
,
S. A.
, and
Oh
,
Y. H.
,
2002
, “
Characterization of PKM Dynamics in Terms of System Identification
,”
J. Multi-Body Dyn.
,
216
(
1
), pp.
59
72
.
13.
Wu
,
P. D.
,
Xiong
,
H. G.
, and
Kong
,
J. Y.
,
2012
, “
Dynamic Analysis of 6-SPS Parallel Mechanism
,”
Int. J. Mech. Mater. Des.
,
8
(
2
), pp.
121
128
.
14.
Ji
,
Z.
,
1993
, “
Study of the Effect of Leg Inertia in Stewart Platforms
,”
IEEE
Conference on Robotics and Automation
, Atlanta, GA, May 2–6, pp.
121
126
.
15.
Xi
,
F. F.
,
Sinatra
,
R.
, and
Han
,
W. Z.
,
2001
, “
Effect of Leg Inertia on Dynamics of Sliding-Leg Hexapods
,”
ASME J. Dyn. Syst., Meas. Control
,
123
(
2
), pp.
265
271
.
16.
Ceccarelli
,
M.
, and
Carbone
,
G.
,
2002
, “
A Stiffness Analysis for CaPaMan
,”
Mech. Mach. Theory
,
37
(
5
), pp.
427
439
.
17.
Carbone
,
G.
, and
Ceccarelli
,
M.
,
2004
, “
A Stiffness Analysis for a Hybrid Parallel-Serial Manipulator
,”
Robotica
,
22
(
5
), pp.
567
576
.
18.
Khemili
,
I.
, and
Romdhane
,
L.
,
2008
, “
Dynamic Analysis of a Flexible Slider-Crank Mechanism With Clearance
,”
Eur. J. Mech. A/Solids
,
27
(
5
), pp.
882
898
.
19.
Zhu
,
C. X.
,
Wang
,
J.
,
Chen
,
Z. W.
, and
Liu
,
B.
,
2014
, “
Dynamic Characteristic Parameter Identification Analysis of a Parallel Manipulator With Flexible Links
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
4833
4840
.
20.
Zhang
,
X. P.
,
Millks
,
J. K.
, and
Cleghorn
,
W. L.
,
2007
, “
Dynamic Modeling and Experimental Validation of a 3-PRR Parallel Manipulator With Flexible Intermediate Links
,”
J. Intell. Rob. Syst.
,
50
(
4
), pp.
323
340
.
21.
Zavrazhina
,
T. V.
,
2008
, “
Influence of Elastic Compliance of Links on the Dynamics and Accuracy of a Manipulating Robot With Rotational and Translational Joints
,”
Mech. Solids
,
43
(
6
), pp.
850
862
.
22.
Kang
,
B.
, and
Millks
,
J. K.
,
2003
, “
Dynamic Modeling of Structurally Flexible Planar Parallel Manipulator
,”
Robotica
,
20
(
3
) pp.
329
339
.
23.
Pira
,
G.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2005
, “
Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator With Flexible Links
,”
Mech. Mach. Theory
,
40
(
7
), pp.
849
862
.
24.
Bonnemains
,
T.
,
Chanal
,
H.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2009
, “
Stiffness Computation and Identification of Parallel Kinematic Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041013
.
25.
Bonnemains
,
T.
,
Chanal
,
H.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2013
, “
Dynamic Model of an Overconstrained PKM With Compliances: The Tripteor X7
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
180
191
.
26.
Law
,
M.
,
Ihlenfeldt
,
S.
,
Wabner
,
M.
,
Altintas
,
Y.
, and
Neygbauer
,
R.
,
2013
, “
Position-Dependent Dynamics and Stability of Serial-Parallel Kinematic Machines
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
375
378
.
27.
Hong
,
D.
,
Kim
,
S.
,
Choi
,
W. C.
, and
Song
,
J. B.
,
2003
, “
Analysis of Machining Stability for a Parallel Machine Tool
,”
Mech. Based Des. Struct. Mach.
,
31
(
4
), pp.
509
528
.
28.
Zhao
,
Y.-Q.
,
Zhang
,
J.
,
Ruan
,
L.-Y.
,
Luo
,
H.-W.
, and
Yu
,
X.-L.
,
2016
, “
A Modified Elasto-Dynamic Model Based Stastic Stiffness Evaluation for a 3-PRS PKM
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
3
), p.
586233
.
29.
Zhang
,
J.
,
Dai
,
J. S.
, and
Huang
,
T.
,
2015
, “
Character Equation-Based Dynamic Analysis of a Three-Revolute Prismatic Spherical Parallel Kinematic Machine
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021017
.
30.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
31.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.
You do not currently have access to this content.