Antilock braking system (ABS) has been designed to attain maximum negative acceleration and prevent the wheels from locking. Many efforts had been paid to design controller for ABS to improve the brake performance, especially when road condition changes. In this paper, an adaptive fuzzy fractional-order sliding mode controller (AFFOSMC) design method is proposed for ABS. The proposed AFFOSMC combines the fractional-order sliding mode controller (FOSMC) and fuzzy logic controller (FLC). In FOSMC, the sliding surface is PDα, which is based on fractional calculus (FC) and is more robust than conventional sliding mode controllers. The FLC is designed to compensate the effects of parameters varying of ABS. The tuning law of the controller is derived based on Lyapunov theory, and the stability of the system can be guaranteed. Simulation results demonstrate the effectiveness of AFFOSMC for ABS under different road conditions.

References

1.
Oudghiri
,
M.
,
Chadli
,
M.
, and
Hajjaji
,
A. E.
,
2007
, “
Robust Fuzzy Sliding Mode Control for Antilock Braking System
,”
Int. J. Sci. Tech. Autom. Control
,
1
, pp.
13
28
.
2.
Hoseinnezhad
,
R.
, and
Hadiashar
,
A. B.
,
2011
, “
Efficient Antilock Braking by Direct Maximization of Tire-Road Frictions
,”
IEEE Trans. Ind. Electron.
,
58
(
8
), pp.
3593
3599
.
3.
Drakunov
,
S.
,
Ümit Özgüner
,
Dix
,
P.
, and
Ashrafi
,
B.
,
1995
, “
ABS Control Using Optimum Search Via Sliding Modes
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
79
85
.
4.
Liu
,
Y.
, and
Sun
,
J.
,
1995
, “
Target Slip Tracking Using Gain-Scheduling for Braking Systems
,”
American Control Conference
, Seattle, WA, June 21–23, pp.
1178
1182
.
5.
Tan
,
H.-S.
, and
Tomizuka
,
M.
,
1990
, “
Discrete-Time Controller Design for Robust Vehicle Traction
,”
IEEE Control Syst. Mag.
,
10
(
3
), pp.
107
113
.
6.
Jing
,
H.
,
Liu
,
Z.
, and
Chen
,
H.
,
2011
, “
A Switched Control Strategy for Antilock Braking System With On/Off Valves
,”
IEEE Trans. Veh. Technol.
,
60
(
4
), pp.
1470
1484
.
7.
Lee
,
K.
, and
Park
,
K.
,
1999
, “
Optimal Robust Control of a Contactless Brake System Using an Eddy Current
,”
Mechatronics
,
9
(
6
), pp.
615
631
.
8.
Oustaloup
,
A.
,
1991
,
La commande CRONE: Commande robuste d'order non entier
,
Hermès
,
Paris
.
9.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
, San Diego, CA.
10.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academia
,
New York
.
11.
Lurie
,
B. J.
,
1994
,
Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller
, U.S. Patent No. 5371670.
12.
Oustaloup
,
A.
,
Lanusse
,
P.
, and
Mathieu
,
B.
,
1995
, “
Robust Control of SISO Plants: The CRONE Control
,”
Proceedings of the ECC’95 Conference
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, p.
1423
.
13.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
14.
Efe
,
M. O.
,
2011
, “
Integral Sliding Mode Control of a Quadrotor With Fractional-Order Reaching Dynamics
,”
Trans. Inst. Meas. Control
,
33
(
8
), pp.
985
1003
.
15.
Efe
,
M. O.
,
2008
, “
Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct Drive Robot Arm
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
38
(
6
), pp.
1561
1570
.
16.
Delavari
,
H.
,
Ghadri
,
R.
,
Ranjbar
,
A.
, and
Momani
,
S.
,
2010
, “
Fuzzy Fractional-Order Sliding Mode Controller for Nonlinear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
963
978
.
17.
Lee
,
C.
,
1990
, “
Fuzzy Logic in Control Systems: Fuzzy Logic Controller. II
,”
IEEE Trans. Syst. Man Cybern.
,
20
(
2
), pp.
404
418
.
18.
Huang
,
C. H.
,
Wang
,
W. J.
, and
Chiu
,
C. H.
,
2011
, “
Design and Implementation of Fuzzy Control on a Two-Wheel Inverted Pendulum
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2988
3001
.
19.
Lin
,
C. M.
, and
Li
,
H. Y.
,
2012
, “
A Novel Adaptive Wavelet Fuzzy Cerebellar Model Articulation Control System Design for Voice Coil Motors
,”
IEEE Trans. Ind. Electron.
,
59
(
4
), pp.
2024
2033
.
20.
Precup
,
R.
,
David
,
R.
,
Petriu
,
E.
,
Preitl
,
S.
, and
Radac
,
M.
,
2012
, “
Fuzzy Control Systems With Reduced Parametric Sensitivity Based on Simulated Annealing
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3049
3061
.
21.
Layne
,
J.
,
Passino
,
K.
, and
Yurkovich
,
S.
,
1993
, “
Fuzzy Learning Control for Antiskid Braking Systems
,”
IEEE Trans. Control Syst. Technol.
,
1
(
2
), pp.
122
129
.
22.
Mauer
,
G. F.
,
1995
, “
A Fuzzy Logic Controller for an ABS Braking System
,”
IEEE Trans. Fuzzy Syst.
,
3
(
4
), pp.
381
388
.
23.
Kim
,
S. W.
, and
Lee
,
J. J.
,
1995
, “
Design of a Fuzzy Controller With Fuzzy Sliding Surface
,”
Fuzzy Sets Syst.
,
71
(
3
), pp.
359
367
.
24.
Kayacan
,
E.
,
Cigdem
,
O.
, and
Kaynak
,
O.
,
2012
, “
Sliding Mode Control Approach for Online Learning as Applied to Type-2 Fuzzy Neural Networks and Its Experimental Evaluation
,”
IEEE Trans. Ind. Electron.
,
59
(
9
), pp.
3510
3520
.
25.
Tang
,
Y.
,
Zhang
,
X.
,
Zhang
,
D.
,
Zhao
,
G.
, and
Guan
,
X.
,
2013
, “
Fractional-Order Sliding Mode Controller Design for Antilock Braking Systems
,”
Neurocomputing
,
111
, pp.
122
130
.
26.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
27.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A. D.
,
2002
, “
A Predictor–Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.
28.
Shampine
,
L. F.
, and
Gordon
,
M. K.
,
1975
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
W. H. Freeman & Co.
, San Francisco, CA.
29.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,”
ESAIM: Proc.
,
5
, pp.
145
158
.
30.
Poursamad
,
A.
,
2009
, “
Adaptive Feedback Linearization Control of Antilock Braking Systems Using Neural Networks
,”
Mechatronics
,
19
(
5
), pp.
767
773
.
31.
Lin
,
C. M.
, and
Hsu
,
C. F.
,
2003
, “
Neural Network Hybrid Control for Antilock Braking Systems
,”
IEEE Trans. Neural Networks
,
14
(
2
), pp.
351
359
.
32.
Lin
,
C.-M.
, and
Hsu
,
C. F.
,
2003
, “
Self-Leaning Fuzzy Sliding Mode Control for Anti-Lock Braking Systems
,”
IEEE Trans. Control Syst. Technol.
,
11
(
2
), pp.
273
278
.
33.
Harifi
,
A.
,
Aghagolzadeh
,
A.
,
Alizadeh
,
G.
, and
Sadeghi
,
M.
,
2005
, “
Designing a Sliding Mode Controller for Antilock Brake System
,”
IEEE
The International Conference on Computer as a Tool, EUROCON 2005, Belgrade, Serbia, Nov. 21–24, Vol. 1, pp.
258
261
.
You do not currently have access to this content.