Management of a very large number of distributed energy resources, energy loads, and generators, is a hot research topic. Such energy demand management techniques enable appliances to control and defer their electricity consumption when price soars and can be used to cope with the unpredictability of the energy market or provide response when supply is strained by demand. We consider a multi-agent system comprising multiple energy loads, each with a dedicated controller. This paper introduces our latest research in self-organization of coordinated behavior of multiple agents. Energy resource agents (RAs) coordinate with each other to achieve a balance between the overall consumption by the multi-agent collective and the stress on the community. In order to reduce the overall communication load while permitting efficient coordinated responses, information exchange is through indirect communications between RAs and a broker agent (BA). This gives a decentralized coordination approach that does not rely on intensive computation by a central processor. The algorithm presented here can coordinate different types of loads by controlling their set-points. The coordination strategy is optimized by a genetic algorithm (GA) and a fast coordination convergence has been achieved.

References

1.
Borenstein
,
S.
,
Jaske
,
M.
, and
Rosenfeld
,
A.
,
2002
, “
Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets
,”
Center for the Study of Energy Markets
,
University of California
, Paper No. CSEMWP-105.
2.
Wilson
,
B.
,
Rassenti
,
S. J.
, and
Smith
,
V. L.
,
2003
, “
Controlling Market Power and Price Spikes in Electricity Networks, Demand-Side Bidding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
5
), pp.
2998–3003
.10.1073/pnas.252758799
3.
Wilson
,
B.
, and
Deck
,
C. A.
,
2002
, “
The Effectiveness of Low Price Matching in Mitigating the Competitive Pressure of Low Friction Electronic Markets
,”
J. Electron. Commerce Res.
,
2
(
4
), pp.
385–398
.10.1023/A:1020567515249
4.
Short
,
J.
,
Infield
,
D. G.
, and
Freris
,
L. L.
,
2007
, “
Stabilization of Grid Frequency Through Dynamic Demand Control
,”
IEEE Trans. Power Syst.
,
22
, pp.
1284
1293
.10.1109/TPWRS.2007.901489
5.
Callaway
,
D. S.
,
2009
, “
Tapping the Energy Storage Potential in Electric Loads to Deliver Load Following and Regulation, With Application to Wind Energy
,”
Energy Convers. Manage.
,
50
, pp.
1389
1400
.10.1016/j.enconman.2008.12.012
6.
Bashash
,
S.
, and
Fathy
,
H. K.
,
2011
, “
Modeling and Control Insights Into Demand-Side Energy Management Through Set-Point Control of Thermostatic Loads
,”
Proceedings of 2011 American Control Conference
,
San Francisco, CA
.
7.
Li
,
J.
,
Poulton
,
G.
,
James
,
G.
, and
Guo
,
Y.
,
2009
, “
Multiple Energy Resource Agent Coordination Based on Electricity Price
,”
J. Distrib. Energy Resour.
,
5
(
2
), pp.
103
120
.
8.
Guo
,
Y.
,
Li
,
J.
, and
James
,
G.
,
2005
, “
Evolutionary Optimisation of Distributed Energy Resources
,”
Proceedings of the 18th Australian Joint Conference on Artificial Intelligence—AI 2005: Advances in Artificial Intelligence
,
Sydney, Australia
, Dec. 2005, Vol.
3809
, pp.
1086
1091
.
9.
Li
,
R.
,
Poulton
,
G.
, and
James
,
G.
,
2008
, “
Agent-Based Optimisation Systems for Electrical Load Management
,”
Proceedings of the First International Workshop on Optimisation in Multi-Agent Systems
,
Estoril, Portugal
, May 2008, pp.
60
69
.
10.
Li
,
J.
,
Poulton
,
G.
, and
James
,
G.
,
2007
, “
Agent-Based Distributed Energy Management
,”
20th Australian Joint Conference on Artificial Intelligence—AI 2007: Advances in Artificial Intelligence
, Dec. 2007,
Australia
, Vol.
4830
, pp.
569
578
.
11.
Li
,
J.
,
Poulton
,
G.
,
James
,
G.
,
Zeman
,
A.
,
Wang
,
P.
,
Chadwick
,
M.
, and
Piraveenan
,
M.
,
2007
, “
Performance of Multi-Agent Coordination of Distributed Energy Resources
,”
WSEAS Trans. Syst. Control
,
2
(
1
), pp.
52
58
.
12.
Li
,
J.
,
Poulton
,
G.
, and
James
,
G.
,
2010
, “
Coordination of Distributed Energy Resource Agents
,”
J. Appl. Artif. Intell.
,
24
(
5
), pp.
351
380
.10.1080/08839514.2010.481483
13.
Luo
,
S.
,
Jin
,
J.
, and
Li
,
J.
,
2009
, “
A Smart Fridge With an Ability to Enhance Health and Enable Better Nutrition
,”
Int. J. Multimedia Ubiquitous Eng.
,
4
(
2
), pp.
66
80
.
14.
Regan
,
T.
,
Sinnock
,
H.
, and
Davis
,
A.
,
2003
, “
Distributed Energy Neural Network Integration System: Year One Final Report
,” Report No. NREL/SR-560-34216.
15.
Dimeas
,
L.
, and
Hatziargyriou
,
N. D.
,
2004
, “
Operation of a Multi Agent System for Microgrid Control
,”
IEEE Trans. Power Syst.
,
20
(
3
), pp.
1447
1455
.10.1109/TPWRS.2005.852060
16.
Akkermans
,
H.
,
Schreinemakers
,
J.
, and
Kok
,
K.
,
2005
, “
Microeconomic Distributed Control: Theory and Application of Multi-Agent Electronic Markets
,”
Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems
, pp.
75
82
.
17.
Ygge
,
F.
,
1998
, “
Market-Oriented Programming and its Application to Power Load Management
,” Ph.D. thesis,
Lund University
,
Lund, Sweden
.
18.
Stone
,
P.
, and
Veloso
,
M.
,
2000
, “
Multiagent Systems: A Survey From a Machine Learning Perspective
,”
Auton. Rob.
,
8
(
3
), pp.
345
383
.10.1023/A:1008942012299
19.
Australia Energy Market Operator (AEMO)
, 2009, retrieved on October 2013, http://www.aemo.com.au/
20.
Hudson
,
G.
, and
Underwood
,
C. P.
,
1999
, “
A Simple Building Modelling Procedure for MatLab/Simulink
,”
Proceedings of the International Building Performance and Simulation Conference
,
Kyoto Japan
, Vol.
2
, pp.
777
783
.
21.
Clement
,
B. J.
, and
Durfee
,
E. H.
,
2000
, “
Performance of Coordinating Concurrent Hierarchical Planning Agents Using Summary Information
,”
Proceedings of the 7th International Workshop on Intelligent Agents VII: Agent Theories
, Architectures, and Languages,
Boston, MA
, pp.
202
216
.
22.
Horst
,
R.
,
Pardalos
,
P. M.
, and
Thoai
,
N. V.
,
2000
, “
Introduction to Global Optimization
,”
Nonconvex Optimization and its Application
, 2nd ed., Vol.
48
,
Springer-Verlag, Berlin
.
23.
Luo
,
S.
,
Hu
,
Q.
,
He
,
X.
,
Li
,
J.
,
Jin
,
S. J.
, and
Park
,
M.
,
2009
, “
Automatic Liver Parenchyma Segmentation From Abdominal CT Images Using Support Vector Machines
,”
IEEE/CME International Conference on Complex Medical Engineering
,
Tempe, AZ
, April 9–11, Paper No. 10071.
24.
Li
,
J.
,
Luo
,
S.
, and
Jin
,
J.
,
2010
, “
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
,”
Sensors
,
10
(
10
), pp.
9384
9396
.10.3390/s101009384
25.
Rennard
,
J. P.
,
2000
, “
Introduction to Genetic Algorithms
,” Ph.D. thesis,
University Pierre Mendès France
,
Grenoble, France
. Available at http://www.rennard.org/alife/english/gavintrgb.html. Retrieved on October 2013.
26.
Platt
,
G.
,
Li
,
J.
,
Li
,
R.
,
Poulton
,
G.
,
James
,
G.
, and
Wall
,
J.
,
2010
, “
Adaptive HVAC Zone Modeling for Sustainable Buildings
,”
J. Energy Build.
,
42
(
4
), pp.
412
421
.10.1016/j.enbuild.2009.10.009
27.
Nord Pool Spot
, 1991, retrieved on October 2013, http://www.nordpoolspot.com/trading/
28.
Hopper
,
N.
,
Goldman
,
C.
,
Bharvirkar
,
R.
, and
Engel
,
D.
,
2006
, “
The Summer of 2006: A Milestone in the Ongoing Maturation of Demand Response
,”
Electr. J.
,
20
(
5
), pp.
62
75
.10.1016/j.tej.2007.04.007
29.
You do not currently have access to this content.