In this paper, we address the finite-horizon optimization of a class of nonlinear singularly perturbed systems based on the state-dependent Riccati equation (SDRE) technique and singular perturbation theory. In such systems, both slow and fast variables are nonlinear. Moreover, the performance index for the system states is nonlinearly quadratic. In this study, unlike conventional methods, linearization does not occur around the equilibrium point, and it provides a description of the system as state-dependent coefficients (SDCs) in the form f(x) = A(x)x. One of the advantages of the state-dependent Riccati equation method is that no information about the Jacobian of the nonlinear system, just like the Hamilton–Jacobi–Belman (HJB) equation, is required. Thus, the state-dependent Riccati equation has simplicity of the linear quadratic method. On the other hand, one of the advantages of the singular perturbation theory is that it reduces high-order systems into two lower order subsystems due to the interaction between slow and fast variables. In the proposed method, the singularly perturbed state-dependent Riccati equations are first derived for the system under study. Using the singular perturbation theory, the singularly perturbed state and state-dependent Riccati equations are separated into outer layer, initial, and final layer correction equations. These equations are then solved to obtain the optimal control law. Simulation results in comparison with the previous methods indicate the desirable performance and efficiency of the proposed method. However, it should be noted that due to the dependence of the proposed method on the choice of state-dependent matrices and the presence of a nonlinear optimal control problem, the results are generally suboptimal.

References

1.
Çimen
,
T.
,
2010
, “
Systematic and Effective Design of Nonlinear Feedback Controllers Via the State-Dependent Riccati Equation (SDRE) Method
,”
Annu. Rev. Control
,
34
, pp.
32
51
.10.1016/j.arcontrol.2010.03.001
2.
Pearson
,
J. D.
,
1962
, “
Approximation Methods in Optimal Control
,”
J. Electron. Control
,
13
, pp.
453
469
.10.1080/00207216208937454
3.
Wernli
,
A.
, and
Cook
,
G.
,
1975
, “
Suboptimal Control for the Nonlinear Quadratic Regulator Problem
,”
Automatica
,
11
, pp.
75
84
.10.1016/0005-1098(75)90010-2
4.
Mracek
,
C. P.
, and
Cloutier
,
J. R.
,
1998
, “
Control Designs for the Nonlinear Benchmark Problem Via the State-Dependent Riccati Equation Method
,”
Int. J. Robust Nonlinear Control
,
8
, pp.
401
433
.10.1002/(SICI)1099-1239(19980415/30)8:4/5<401::AID-RNC361>3.0.CO;2-U
5.
Hammett
,
K. D.
,
Hall
,
C. D.
, and
Ridgely
,
D. B.
,
1998
, “
Controllability Issues in Nonlinear State-Dependent Riccati Equation Control
,”
AIAA J. Guid. Control Dyn.
,
21
, pp.
767
773
.10.2514/2.4304
6.
Shamma
,
J. S.
, and
Cloutier
,
J. R.
,
2003
, “
Existence of SDRE Stabilizing Feedback
,”
IEEE Trans. Autom. Control
,
48
, pp.
513
517
.10.1109/TAC.2002.808473
7.
Khaloozadeh
,
H.
, and
Abdolahi
,
A.
,
2002
, “
An Iterative Procedure for Optimal Nonlinear Tracking Problem
,”
Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision (ICARCV)
, pp.
1508
1512
.
8.
Khaloozadeh
,
H.
, and
Abdolahi
,
A.
,
2004
, “
A New Iterative Procedure for Optimal Nonlinear Regulation Problem
,”
Proceedings of the 3rd International Conference on System Identification and Control Problems (SICPRO)
, pp.
1256
1266
.
9.
Beeler
,
S. C.
,
2004
, “
State-Dependent Riccati Equation Regulation of Systems With State and Control Nonlinearities
,” NASA and National Institute of Aerospace, Hampton, VA, Technical Report NASA/CR-2004-213245, NIA-2004-08.
10.
Banks
,
H. T.
,
Lewis
,
B. M.
, and
Tran
,
H. T.
,
2007
, “
Nonlinear Feedback Controllers and Compensators, A State-Dependent Riccati Equation Approach
,”
Comput. Optim. Appl.
,
37
, pp.
177
218
.10.1007/s10589-007-9015-2
11.
Çimen
,
T.
,
2012
, “
Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis
,”
J. Guid. Control Dyn.
,
35
(
4
), pp.
1025
1047
.10.2514/1.55821
12.
Pukdeboon
,
C.
,
2012
, “
Optimal Output Feedback Controllers for Spacecraft Attitude Tracking
,”
Asian J. Control
. (in press).10.1002/asjc.615
13.
Naidu
,
D. S.
, and
Calise
,
A. J.
,
2001
, “
Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: A Survey
,”
AIAA J. Guid. Control Dyn.
,
24
, pp.
1057
1078
.10.2514/2.4830
14.
Kokotovic
,
P.
, and
Sannuti
,
P.
,
1968
, “
Singular Perturbation Method for Reducing the Model Order in Optimal Control Design
,”
IEEE Trans. Autom. Control
,
13
, pp.
377
384
.10.1109/TAC.1968.1098927
15.
Fridman
,
E.
,
2000
, “
Exact Slow-Fast Decomposition of Nonlinear Singularly Perturbed Optimal Control Problem
,”
Syst. Control Lett.
,
40
, pp.
121
131
.10.1016/S0167-6911(00)00008-6
16.
Fridman
,
E.
,
2001
, “
A Descriptor System Approach to Nonlinear Singularly Perturbed Optimal Control Problem
,”
Automatica
,
37
, pp.
543
549
.10.1016/S0005-1098(00)00185-0
17.
Amjadifard
,
R.
,
Beheshti
,
M. T. H.
, and
Yazdanpanah
,
M. J.
,
2011
, “
Robust Stabilization for a Class of Nonlinear Singularly Perturbed Systems
,”
ASME J. Dyn. Syst. Meas. Control.
,
133
(
5
), p.
051004
.10.1115/1.4003383
18.
Amjadifard
,
R.
,
Yazdanpanah
,
M. J.
, and
Beheshti
,
M. T. H.
,
2005
, “
Robust Regulation of a Class of Nonlinear Singularly Perturbed Systems
,”
16th IFAC World Congress
, July 4-8, Prague, Czech Republic, pp. 1009-1009.10.3182/20050703-6-CZ-1902.01010
19.
Lewis
,
F. L.
, and
Syrmos
,
V. L.
,
1995
,
Optimal Control
, 2nd ed.,
Wiley Interscience
, New York.
20.
O'Malley
,
R.
,
1974
,
Introduction to Singular Perturbations
,
Academic Press
, New York.
21.
Kokotovic
,
P.
, and
Yackel
,
R.
,
1972
, “
Singular Perturbation of Linear Regulators: Basic Theorems
,”
IEEE Trans. Autom. Control
,
17
, pp.
29
37
.10.1109/TAC.1972.1099851
22.
Amjadifard
,
R.
,
Khadem
,
S. E.
, and
Khaloozadeh
,
H.
,
2001
, “
Position and Velocity Control of a Flexible Joint Robot Manipulator Via Fuzzy Controller Based on Singular Perturbation Analysis
,”
Proceedings of the 10th IEEE International Conference on Fuzzy Systems
, pp.
348
351
.
You do not currently have access to this content.