This paper presents a dynamic model of a monopropellant-based chemofluidic power supply and actuation system. The proposed power supply and actuation system, as presented in prior works, is motivated by the current lack of a viable system that can provide adequate energetic autonomy to human-scale power-comparable untethered robotic systems. As such, the dynamic modeling presented herein is from an energetic standpoint by considering the power and energy exchanged and stored in the basic constituents of the system. Two design configurations of the actuation system are presented and both are modeled. A first-principle based lumped-parameter model characterizing reaction dynamics, hydraulic flow dynamics, pneumatic flow dynamics, and compressible gas dynamics is developed for purposes of control design. Experimental results are presented that validate the model.

1.
Barth
,
E. J.
,
Gogola
,
M. A.
, and
Goldfarb
,
M.
, 2003, “
Modeling and Control of a Monopropellant-Based Pneumatic Actuation System
,” IEEE International Conference on Robotics and Automation, Vol.
1
, pp.
628
633
.
2.
Morillon
,
J. G.
, 2003, “
Development of High Level Robotic Functions for Mobile Combat Systems
,”
Proc. SPIE
0277-786X,
5083
, pp.
452
461
.
3.
Glass
,
S. W.
,
Ranson
,
C. C.
,
Reinholtz
,
C. F.
, and
Calkins
,
J. M.
, 1996, “
Modular Robotic Applications in Nuclear Power Plant Maintenance
,” in
Proceedings of the 58th American Power Conference
, Vol.
58-1
, pp.
421
426
.
4.
Roman
,
H. T.
, 1991, “
Robots Cut Risks and Costs in Nuclear Power Plants
,”
IEEE Computer Applications in Power
,
4
(
3
), pp.
11
15
.
5.
Pellerin
,
C.
, 1993, “
Service Robots in the 1990s
,”
Ind. Robot
0143-991X,
20
(
3
), pp.
34
35
.
6.
Mae
,
Y.
,
Arai
,
T.
,
Inoue
,
K.
,
Yoshida
,
A.
,
Miyawaki
,
K.
, and
Adachi
,
H.
, 2003, “
Locomotive Working Robots in Rescue Operations
,”
Int. J. Rob. Autom.
0826-8185,
18
(
4
), pp.
153
159
.
7.
Katz
,
D. S.
, and
Some
,
R. R.
, 2003, “
NASA Advances Robotic Space Exploration
,”
Computer
0018-9162,
36
, pp.
52
61
.
8.
Barth
,
E. J.
,
Gogola
,
M.
,
Wehrmeyer
,
J. A.
, and
Goldfarb
,
M.
, 2002, “
The Design and Modeling of a Liquid-Propellant-Powered Actuator for Energetically Autonomous Robots
,” ASME International Mechanical Engineering Conference and Exposition (IMECE).
9.
Fite
,
K. B.
, and
Goldfarb
,
M.
, 2006, “
Design and Energetic Characterization of a Proportional-Injector Monopropellant-Powered Actuator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
2
), pp.
196
204
.
10.
Hearn
,
H. C.
, and
Young
,
D. L.
, 1974, “
Performance Prediction Model for a High-Impulse Monopropellant Propulsion System
,”
J. Spacecr. Rockets
0022-4650,
11
(
11
), pp.
764
768
.
11.
Hitt
,
D. L.
, 2001, “
MEMS-Based Satellite Micropropulsion via Catalyzed Hydrogen Peroxide Decomposition
,”
Smart Mater. Struct.
0964-1726,
10
(
6
), pp.
1163
1175
.
12.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—I
,”
Trans. ASME
0097-6822,
78
, pp.
233
242
.
13.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—II
,”
Trans. ASME
0097-6822,
78
, pp.
243
249
.
14.
Bobrow
,
J.
, and
McDonell
,
B.
, 1998, “
Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
15.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
426
434
.
16.
Goldfarb
,
M.
,
Barth
,
E. J.
,
Gogola
,
M. A.
, and
Wehrmeyer
,
J. A.
, 2003, “
Design and Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-Powered Robots
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
254
262
.
17.
Khoumeri
,
B.
,
Balbi
,
N.
,
Leoni
,
E.
,
Chiaramonti
,
N.
, and
Balbi
,
J. H.
, 2000, “
The Decomposition of Hydrogen Peroxide—A Nonlinear Dynamic Model
,”
J. Therm Anal. Calorim.
1418-2874,
59
pp.
901
911
.
18.
Avallone
,
E.
, 1987,
Mark’s Standard Handbook for Mechanical Engineers
,
McGraw-Hill
, NY.
19.
Ogata
,
K.
, 1978, “
System Dynamics
,”
Prentice-Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.