Finding effective and efficient tools for complex freeform shape modification continues to be a challenging problem in computer graphics and computer-aided design. Although current approaches give reasonable results, their computation time and complexity often prevent their further development in more complex cases, especially in reusing an existing design. In this paper, for a better control of existing freeform shapes, deformable freeform feature templates are introduced. By the advantage of a small number of intrinsic parameters, a given freeform shape can be quickly approximated by one of the deformable templates. The deformable templates are further developed to track and match complex freeform shapes, resulting in extendable templates. With mappings, the original shape and the approximated template are associated. Thus, further shape manipulations can be conducted effectively using high-level intrinsic shape parameters. Experiments were carried out to verify the proposed algorithms. It is also described how the matching and manipulating techniques can be applied in computer graphics and computer-aided design applications.

1.
Sederberg
,
T. W.
, and
Parry
,
S. R.
, 1986, “
Freeform Deformations of Solid Geometric Models
,”
Comput. Graph.
0097-8930,
20
(
4
), pp.
151
160
.
2.
Shah
,
J. J.
, and
Mantyla
,
M.
, 1995,
Parametric and Featured Based CAD∕CAM
,
Wiley-Interscience
, New York.
3.
Fontana
,
M.
,
Giannini
,
F.
, and
Meirana
,
M.
, 1999, “
A Freeform Feature Taxonomy
,”
Comput. Graph. Forum
1067-7055,
18
, pp.
107
118
.
4.
van den Berg
,
E.
,
Bronsvoort
,
W. F.
, and
Vergeest
,
J. S. M.
, 2002, “
Freeform Feature Modeling: Concepts and Prospects
,”
Comput Ind.
0166-3615,
49
(
2
), pp.
217
233
.
5.
Cavendish
,
J. C.
, 1995, “
Integrating Feature-Based Surface With Freeform Deformation
,”
Comput.-Aided Des.
0010-4485,
27
(
9
), pp.
703
711
.
6.
Li
,
C. L.
, and
Hui
,
K. C.
, 2000, “
Feature Recognition by Template Matching
,”
Comput. Graph.
0097-8930,
24
(
4
), pp.
569
583
.
7.
Chivate
,
P. N.
, and
Jablokow
,
A. G.
, 1993, “
Solid-Model Generation From Measured Point Data
,”
Comput.-Aided Des.
0010-4485,
25
(
9
), pp.
587
600
.
8.
Sakar
,
B.
, and
Menq
,
C. H.
, 1991, “
Smooth-Surface Approximation and Reverse Engineering
,”
Comput.-Aided Des.
0010-4485,
23
(
9
), pp.
623
-
628
.
9.
Motavalli
,
S.
, and
Bidanda
,
B.
, 1994, “
Modular Software Development for Digitizing System Data Analysis in Reverse Engineering Applications: Case of Concentric Rotational Parts
,”
Comput. Ind. Eng.
0360-8352,
26
, pp.
395
410
.
10.
Lin
,
J. C.
, 2001, “
Free-Form Surface Rebuild Using an Adductive Neural Network
,”
J. Mater. Process. Technol.
0924-0136,
116
, pp.
170
175
.
11.
Ueng
,
W. D.
,
Lai
,
J. Y.
, and
Doong
,
J. L.
, 1998, “
Sweep-Surface Reconstruction From Three-dimensional Measured Data
,”
Comput.-Aided Des.
0010-4485,
30
, pp.
791
805
.
12.
Bardinet
,
E.
, and
Cohen
,
L. D.
, 1998, “
A Parametric Deformable Model to Fit Unstructured 3D Data
,”
Comput. Vis. Image Underst.
1077-3142,
71
, pp.
39
54
.
13.
Solina
,
F.
, and
Bajcsy
,
R.
, 1990, “
Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
12
, pp.
131
147
.
14.
Biermann
,
H.
,
Martin
,
I.
,
Bernardini
,
F.
, and
Zorin
,
D.
, 2002, “
Cut-and-Paste Editing of Multiresolution Surfaces
,”
ACM Trans. Graphics
0730-0301,
21
, pp.
312
321
.
15.
Piegl
,
L. A.
, and
Tiller
,
W.
, 2001, “
Parametrization For Surface Fitting in Reverse Engineering
,”
Comput.-Aided Des.
0010-4485,
33
(
8
), pp.
593
-
603
.
16.
Vergeest
,
J. S. M.
,
Spanjaard
,
S.
and
Song
,
Y.
, 2003, “
Directed Mean Hausdorff Distance of Parameterized Freeform Shapes in 3D: A Case Study
,”
Visual Comput.
0178-2789,
19
, pp.
480
491
.
17.
Chadwick
,
J. E.
,
Haumann
,
D. R.
and
Parent
,
R. E.
, 1989, “
Layered Construction for Deformable Animated Characters
,”
Comput. Graph.
0097-8930,
23
, pp.
243
252
.
18.
Floater
,
M. S.
and
Reimers
,
M.
, 2001, “
Meshless Parameterization and Surface Reconstruction
,”
Comput. Aided Geom. Des.
0167-8396,
18
, pp.
77
92
.
19.
Perng
,
D. B.
,
Chen
,
C.
, and
Li
,
R. K.
, 1990, “
Automatic 3D Machining Feature Extraction from 3D CSG Solid Input
,”
Comput.-Aided Des.
0010-4485,
22
, pp.
285
295
.
20.
Dijk
,
L.
,
Vergeest
,
J. S. M.
, and
Horváth
,
I.
, 1998, “
Testing Shape Manipulation Tools Using Abstract Prototypes
,”
Des. Stud.
0142-694X,
19
(
2
), pp.
187
201
.
21.
Barr
,
A. H.
, 1984, “
Global and Local Deformations of Solid Primitives
,”
Comput. Graph.
0097-8930,
18
, pp.
21
30
.
22.
Chang
,
Y. K.
, and
Rockwood
,
A. P.
, 1994, “
A Generalized de Casteljau Approach to 3D Free-form Deformation
,”
Comput. Graph.
0097-8930,
28
, pp.
257
260
.
23.
Coquillart
,
S.
, 1990, “
Extended Free-form Deformations: A Sculpturing Tool for 3D Geometric Modeling
,”
Comput. Graph.
0097-8930,
24
, pp.
187
196
.
24.
MacCracken
,
R.
, and
Joy
,
K. I.
, 1996, “
Free-Form Deformations with Lattices of Arbitrary Topology
,”
Proceedings of SIGGRAPH’96
, pp.
181
188
.
25.
Singh
,
K.
, and
Fiume
,
E.
, 1998, “
Wires: A Geometric Deformation Technique
,”
Proceedings of SIGGRAPH’98
, pp.
405
414
.
26.
Botsch
,
M.
, and
Kobbelt
,
L.
, 2003, “
Multiresolution Surface Representation Based on Displacement Volumes
,”
Comput. Graph. Forum
1067-7055,
22
, pp.
483
491
.
27.
Vergeest
,
J. S. M.
and
Horváth
,
I.
, 2001, “
Parameterization of Freeform Features
”,
Proceeding of Shape Modeling International
,
IMA-CNR, IEEE
, Piscataway, NJ, pp.
20
29
.
28.
Piegl
,
L. A.
, and
Tiller
,
W.
, 1997,
The NURBS Book
, 2nd ed.,
Springer-Verlag
, Berlin.
29.
Barequet
,
G.
, and
Har-Peled
,
S.
, 2001, “
Efficiently Approximating the Minimum-Volume Bounding Box of A Point Set in Three Dimensions
,”
J. Algorithms
0196-6774,
38
, pp.
91
109
.
30.
Song
,
Y.
,
Vergeest
,
J. S. M.
, and
Saakes
,
D. P.
, 2003, “
Parameter-Driven Freeform Deformations
,”
Proceeding of Eurographics 2003
, Short Presentations, pp.
179
186
.
31.
Hagedoorn
,
M.
, and
Veltkamp
,
R. C.
, 1999, “
Reliable and Efficient Pattern Matching Using An Affine Invariant Metric
,”
Int. J. Comput. Vis.
0920-5691,
31
, pp.
203
225
.
32.
Nocedal
,
J.
and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
, Berlin.
33.
Griessmair
,
J.
, and
Purgathofer
,
W.
, 1989, “
Deformation of Solids With Trivariate B-Spline
,”
Proceedings of Eurographics 89
, pp.
137
148
.
You do not currently have access to this content.