This paper describes algorithms for computing global accessibility cones for each face (i.e., the set of directions from which faces are accessible) on a polyhedral object. We describe exact mathematical conditions and the associated algorithm for determining the set of directions from which a planar face with triangular boundary is inaccessible due to another face on the object. By utilizing the algorithm to compute the exact inaccessibility region for a face, we present algorithms for computing global accessibility cones for each face on the object. These global accessibility cones are represented as a matrix structure and can be used to support a wide variety of accessibility queries for the object.

1.
Kang
,
J. K.
, and
Suh
,
S. H.
, 1997, “Machinability and Set-Up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces,” International Journal of Advanced Manufacturing Technology, 13, pp. 311–325.
2.
Suh
,
S. H.
, and
Kang
,
J. K.
,
1995
, “
Process Planning for Multi-Axis NC Machining of Free Surfaces
,”
Int. J. Prod. Res.
,
33
(
10
), pp.
2723
2738
.
3.
Balasubramaniam
,
M.
,
Laxmiprasad
,
P.
,
Sarma
,
S.
, and
Shaikh
,
Z.
,
2000
, “
Generating 5-Axis NC Roughing Paths Directly From a Tessellated Representation
,”
Comput.-Aided Des.
,
32
, pp.
261
277
.
4.
Chen
,
L. L.
,
Chou
,
S. Y.
, and
Woo
,
T. C.
,
1993
, “
Parting Directions for Mould and Die Design
,”
Comput.-Aided Des.
,
25
, pp.
763
767
.
5.
Dhaliwal
,
S.
,
Gupta
,
S. K.
,
Huang
,
J.
, and
Kumar
,
M.
,
2001
, “
A Feature Based Approach to Automated Design of Multi-Piece Sacrificial Molds
,”
ASME J. Comput. Inf. Sci Eng.
,
1
(
3
), pp.
225
234
.
6.
Weinstein
,
M.
, and
Manoochehri
,
S.
,
1997
, “
Optimum Parting Line Design of Molded and Cast Parts for Manufacturability
,”
J. Manuf. Syst.
,
16
(
1
), pp.
1
11
.
7.
Spitz
,
S. N.
,
Spyridi
,
A. J.
, and
Requicha
,
A. A. G.
,
1999
, “
Accessibility Analysis for Planning of Dimensional Inspection With Coordinate Measuring Machines
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
714
727
, 1042-296X.
8.
Woo
,
T. C.
,
1994
, “
Visibility Maps and Spherical Algorithms
,”
Comput.-Aided Des.
,
26
(
1
), pp.
6
-
1
.
9.
Kim
,
D. S.
,
Papalambros
,
P. Y.
, and
Woo
,
T. C.
,
1995
, “
Tangent, Normal, and Visibility Cones on Be´zier Surfaces
,”
Comput. Aided Geom. Des.
,
12
, pp.
305
320
.
10.
Elber, G., and Cohen, E., 1995, “Arbitrarily Precise Computation of Gauss Maps and Visibility Sets for Freeform Surfaces,” in Proceedings of 3th Symposium on Solid Modeling and Applications, May, Salt Lake City, Utah.
11.
Stage, R., and Roberts, C., 1997, “A Framework for Representing and Computing Tool Accessibility,” Proceedings of DETC’97, September 14–17, Sacramento, California.
12.
Lenthem, J. G., 1949, “Spherical Trigonometry, for the Use of Colleges and Schools,” London, Macmillan.
13.
Chen
,
L.-L.
, and
Woo
,
T. C.
,
1992
, “
Computational Geometry on the Sphere With Application to Automated Machining
,”
J. Mech. Des.
,
114
, pp.
288
295
.
14.
Lo
,
S. H.
,
1989
, “
Delaunay Triangulation of Non-Convex Planar Domains
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
2695
2707
.
15.
Hoffmann, C., Hopcroft, J., and Karasick, M., 1988, “Towards Implementing Robust Geometric Computations,” in 4th Annual ACM Symposium of Computational Geometry, pp. 106–117.
16.
Sahni, S., 1998, Data Structures, Algorithms, and Applications in C++, McGraw-Hill.
17.
Berg, M. de, Kreveld, M. van, Overmars, M., and Schwarzkopf, O., 2000, Computational Geometry: Algorithm and Applications, Springer-Verlag.
You do not currently have access to this content.