Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In various applications of multi-robotics in disaster response, warehouse management, and manufacturing, tasks that are known a priori and tasks added during run time need to be assigned efficiently and without conflicts to robots in the team. This multi-robot task allocation (MRTA) process presents itself as a combinatorial optimization (CO) problem that is usually challenging to be solved in meaningful timescales using typical (mixed)integer (non)linear programming tools. Building on a growing body of work in using graph reinforcement learning to learn search heuristics for such complex CO problems, this paper presents a new graph neural network architecture called the covariant attention mechanism (CAM). CAM can not only generalize but also scale to larger problems than that encountered in training, and handle dynamic tasks. This architecture combines the concept of covariant compositional networks used here to embed the local structures in task graphs, with a context module that encodes the robots’ states. The encoded information is passed onto a decoder designed using multi-head attention mechanism. When applied to a class of MRTA problems with time deadlines, robot ferry range constraints, and multi-trip settings, CAM surpasses a state-of-the-art graph learning approach based on the attention mechanism, as well as a feasible random-walk baseline across various generalizability and scalability tests. Performance of CAM is also found to be at par with a high-performing non-learning baseline called BiG-MRTA, while noting up to a 70-fold improvement in decision-making efficiency over this baseline.

References

1.
Gerkey
,
B. P.
, and
Matarić
,
M. J.
,
2004
, “
A Formal Analysis and Taxonomy of Task Allocation in Multi-robot Systems
,”
Int. J. Rob. Res.
,
23
(
9
), pp.
939
954
.
2.
Aurambout
,
J.-P.
,
Gkoumas
,
K.
, and
Ciuffo
,
B.
,
2019
, “
Last Mile Delivery by Drones: An Estimation of Viable Market Potential and Access to Citizens Across European Cities
,”
Eur. Transp. Res. Rev.
,
11
(
1
), p.
30
.
3.
Ghassemi
,
P.
, and
Chowdhury
,
S.
,
2022
, “
Multi-robot Task Allocation in Disaster Response: Addressing Dynamic Tasks With Deadlines and Robots With Range and Payload Constraints
,”
Rob. Auton. Syst.
,
147
, p.
103905
.
4.
Tian
,
Y.-T.
,
Yang
,
M.
,
Qi
,
X.-Y.
, and
Yang
,
Y.-M.
,
2009
, “
Multi-robot Task Allocation for Fire-Disaster Response Based on Reinforcement Learning
,”
International Conference on Machine Learning and Cybernetics
,
Hebei, China
,
July 12–15
, Vol. 4, pp.
2312
2317
.
5.
Thakur
,
A.
,
Sahoo
,
S.
,
Mukherjee
,
A.
, and
Halder
,
R.
,
2023
, “
Making Robotic Swarms Trustful: A Blockchain-Based Perspective
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060803
.
6.
Ghassemi
,
P.
, and
Chowdhury
,
S.
,
2020
, “
An Extended Bayesian Optimization Approach to Decentralized Swarm Robotic Search
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051003
.
7.
Liu
,
C.
, and
Kroll
,
A.
,
2015
, “
Memetic Algorithms for Optimal Task Allocation in Multi-robot Systems for Inspection Problems With Cooperative Tasks
,”
Soft Comput.
,
19
, pp.
567
584
.
8.
Behjat
,
A.
,
Manjunatha
,
H.
,
Kumar
,
J.
,
Ghassemi
,
P.
,
Distefano
,
J.
,
Doermann
,
D.
,
Dantu
,
K.
,
Esfahani
,
E.
, and
Chowdhury
,
S.
,
2021
, “
Learning Robot Swarm Tactics Over Complex Adversarial Environments
,”
International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
,
Cambridge, UK
,
Nov. 4–5
.
9.
Claes
,
D.
,
Oliehoek
,
F.
,
Baier
,
H.
, and
Tuyls
,
K.
,
2017
, “
Decentralised Online Planning for Multi-robot Warehouse Commissioning
,”
AAMAS '17: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems
,
São Paulo Brazil
,
May 8–12
, Vol. 1, ACM, pp.
492
500
.
10.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2020
, “
A Generative Approach for Scheduling Multi-robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061011
.
11.
Wang
,
L.
,
Nie
,
Q.
,
Zhang
,
Z.
,
Tang
,
D.
, and
Liu
,
C.
,
2024
, “
Probing an Easy-to-Deploy Multi-agent Manufacturing System Based on Agent Computing Node: Architecture, Implementation, and Case Study
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
4
), p.
041008
.
12.
Fang
,
W.
,
Zhang
,
H.
,
Qian
,
W.
,
Guo
,
Y.
,
Li
,
S.
,
Liu
,
Z.
,
Liu
,
C.
, and
Hong
,
D.
,
2023
, “
An Adaptive Job Shop Scheduling Mechanism for Disturbances by Running Reinforcement Learning in Digital Twin Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051013
.
13.
Yan
,
Z.
,
Jouandeau
,
N.
, and
Ali-Chérif
,
A.
,
2012
, “
Multi-robot Heuristic Goods Transportation
,”
6th IEEE International Conference Intelligent Systems
,
Sofia, Bulgaria
,
Sept. 6–8
, IEEE, pp.
409
414
.
14.
Maoudj
,
A.
,
Bouzouia
,
B.
,
Hentout
,
A.
, and
Toumi
,
R.
,
2015
, “
Multi-agent Approach for Task Allocation and Scheduling in Cooperative Heterogeneous Multi-Robot Team: Simulation Results
,”
IEEE 13th International Conference on Industrial Informatics (INDIN)
,
Cambridge, UK
,
July 22–24
.
15.
Paul
,
S.
,
Witter
,
J.
, and
Chowdhury
,
S.
,
2024
, “
Graph Learning-Based Fleet Scheduling for Urban Air Mobility Under Operational Constraints, Varying Demand & Uncertainties
,”
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing
,
Avila, Spain
,
Apr. 8–12
, pp.
638
645
.
16.
Nunes
,
E.
,
Manner
,
M.
,
Mitiche
,
H.
, and
Gini
,
M.
,
2017
, “
A Taxonomy for Task Allocation Problems With Temporal and Ordering Constraints
,”
Rob. Auton. Syst.
,
90
, pp.
55
70
.
17.
Nallusamy
,
R.
,
Duraiswamy
,
K.
,
Dhanalaksmi
,
R.
, and
Parthiban
,
P.
,
2010
, “
Optimization of Non-linear Multiple Traveling Salesman Problem Using k-Means Clustering, Shrink Wrap Algorithm and Meta-heuristics
,”
Int. J. Nonlinear Sci.
,
9
(
2
), pp.
171
177
. https://api.semanticscholar.org/CorpusID:2374546
18.
Toth
,
P.
, and
Vigo
,
D.
,
2014
,
Vehicle Routing: Problems, Methods, and Applications
,
SIAM
,
Philadelphia, PA
.
19.
Khamis
,
A.
,
Hussein
,
A.
, and
Elmogy
,
A.
,
2015
, “Multi-Robot Task Allocation: A Review of the State-of-the-Art,”
Cooperative Robots and Sensor Networks
,
A.
Koubâa
, and
J. R.
Martínez-de Dios
, eds.,
Springer Cham
,
Cham, Switzerland
, pp.
31
51
.
20.
Dantzig
,
G. B.
, and
Ramser
,
J. H.
,
1959
, “
The Truck Dispatching Problem
,”
Manage. Sci.
,
6
(
1
), pp.
80
91
.
21.
Bektas
,
T.
,
2006
, “
The Multiple Traveling Salesman Problem: An Overview of Formulations and Solution Procedures
,”
Omega
,
34
(
3
), pp.
209
219
.
22.
Braekers
,
K.
,
Ramaekers
,
K.
, and
Van Nieuwenhuyse
,
I.
,
2016
, “
The Vehicle Routing Problem: State of the Art Classification and Review
,”
Comput. Ind. Eng.
,
99
, pp.
300
313
.
23.
Azi
,
N.
,
Gendreau
,
M.
, and
Potvin
,
J. Y.
,
2010
, “
An Exact Algorithm for a Vehicle Routing Problem With Time Windows and Multiple Use of Vehicles
,”
Eur. J. Oper. Res.
,
202
(
3
), pp.
756
763
.
24.
Wang
,
D.
,
Hu
,
M.
, and
Gao
,
Y.
,
2018
, “
Multi-criteria Mission Planning for a Solar-Powered Multi-robot System
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
25.
Jose
,
K.
, and
Pratihar
,
D. K.
,
2016
, “
Task Allocation and Collision-Free Path Planning of Centralized Multi-robots System for Industrial Plant Inspection Using Heuristic Methods
,”
Rob. Auton. Syst.
,
80
, pp.
34
42
.
26.
Mazyavkina
,
N.
,
Sviridov
,
S.
,
Ivanov
,
S.
, and
Burnaev
,
E.
,
2021
, “
Reinforcement Learning for Combinatorial Optimization: A Survey
,”
Comput. Oper. Res.
,
134
, p.
105400
.
27.
Archetti
,
C.
,
Feillet
,
D.
,
Gendreau
,
M.
, and
Grazia Speranza
,
M.
,
2011
, “
Complexity of the VRP and SDVRP
,”
Transp. Res. Part C: Emerg. Technol.
,
19
(
5
), pp.
741
750
.
28.
Cattaruzza
,
D.
,
Absi
,
N.
, and
Feillet
,
D.
,
2016
, “
Vehicle Routing Problems With Multiple Trips
,”
4or
,
14
, pp.
223
259
.
29.
Dias
,
M. B.
,
Zlot
,
R.
,
Kalra
,
N.
, and
Stentz
,
A.
,
2006
, “
Market-Based Multirobot Coordination: A Survey and Analysis
,”
Proc. IEEE
,
94
(
7
), pp.
1257
1270
.
30.
Schneider
,
E.
,
Sklar
,
E. I.
,
Parsons
,
S.
, and
Özgelen
,
A. T.
,
2015
, “
Auction-Based Task Allocation for Multi-robot Teams in Dynamic Environments
,” Towards Autonomous Robotic Systems: 16th Annual Conference, TAROS 2015, Liverpool, Sept. 8–10,
Springer International Publishing
, pp.
246
257
.
31.
Ismail
,
S.
, and
Sun
,
L.
,
2017
, “
Decentralized Hungarian-Based Approach for Fast and Scalable Task Allocation
,”
International Conference on Unmanned Aircraft Systems (ICUAS)
,
Miami, FL
,
June 13–16
, IEEE, pp.
23
28
.
32.
Ghassemi
,
P.
,
DePauw
,
D.
, and
Chowdhury
,
S.
,
2019
, “
Decentralized Dynamic Task Allocation in Swarm Robotic Systems for Disaster Response
,”
International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
,
New Brunswick, NJ
,
Aug. 22–23
, IEEE, pp.
83
85
.
33.
Mitiche
,
H.
,
Boughaci
,
D.
, and
Gini
,
M.
,
2019
, “
Iterated Local Search for Time-Extended Multi-robot Task Allocation With Spatio-temporal and Capacity Constraints
,”
J. Intell. Syst.
,
28
(
2
), pp.
347
360
.
34.
Vansteenwegen
,
P.
,
Souffriau
,
W.
,
Vanden Berghe
,
G.
, and
Van Oudheusden
,
D.
,
2009
, “
Iterated Local Search for the Team Orienteering Problem With Time Windows
,”
Comput. Oper. Res.
,
36
(
12
), pp.
3281
3290
.
35.
Qian
,
B.
, and
Cheng
,
H. H.
,
2018
, “
Bio-inspired Coalition Formation Algorithms for Multirobot Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021010
.
36.
Choudhury
,
S.
,
Gupta
,
J. K.
,
Kochenderfer
,
M. J.
,
Sadigh
,
D.
, and
Bohg
,
J.
,
2022
, “
Dynamic Multi-robot Task Allocation Under Uncertainty and Temporal Constraints
,”
Auton. Rob.
,
46
(
1
), pp.
231
247
.
37.
Wei
,
C.
,
Hindriks
,
K. V.
, and
Jonker
,
C. M.
,
2016
, “
Dynamic Task Allocation for Multi-robot Search and Retrieval Tasks
,”
Appl. Intell.
,
45
, pp.
383
401
.
38.
Kool
,
W.
,
Van Hoof
,
H.
, and
Welling
,
M.
,
2019
, “
Attention, Learn to Solve Routing Problems!
,”
Kool, Wouter, Herke van HoofInternational Conference on Learning Representations
,
New Orleans, LA
,
May 6–9
.
39.
Barrett
,
T.
,
Clements
,
W.
,
Foerster
,
J.
, and
Lvovsky
,
A.
,
2020
, “
Exploratory Combinatorial Optimization With Reinforcement Learning
,”
Proceedings of the AAAI conference on artificial intelligence
,
New York
,
Feb. 7–12
, Vol. 34, pp.
3243
3250
.
40.
Khalil
,
E.
,
Dai
,
H.
,
Zhang
,
Y.
,
Dilkina
,
B.
, and
Song
,
L.
,
2017
, “
Learning Combinatorial Optimization Algorithms Over Graphs
,”
Advances in neural information processing systems
,
Long Beach, CA
,
Dec. 4– 9
, pp.
6348
6358
.
41.
Kaempfer
,
Y.
, and
Wolf
,
L.
,
2018
, “
Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Networks
,”
ArXiv
. https://arxiv.org/abs/1803.09621
42.
Li
,
Z.
,
Chen
,
Q.
, and
Koltun
,
V.
,
2018
, “
Combinatorial Optimization With Graph Convolutional Networks and Guided Tree Search
,”
Advances in Neural Information Processing Systems
,
Montréal, Canada
,
Dec. 2–8
, pp.
539
548
.
43.
Nowak
,
A.
,
Villar
,
S.
,
Bandeira
,
A. S.
, and
Bruna
,
J.
,
2017
, “
A Note on Learning Algorithms for Quadratic Assignment With Graph Neural Networks
,”
Stat
,
1050
, p.
22
. https://api.semanticscholar.org/CorpusID:22787957
44.
Tolstaya
,
E.
,
Paulos
,
J.
,
Kumar
,
V.
, and
Ribeiro
,
A.
,
2021
, “
Multi-robot Coverage and Exploration Using Spatial Graph Neural Networks
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, IEEE, pp.
8944
8950
.
45.
Sykora
,
Q.
,
Ren
,
M.
, and
Urtasun
,
R.
,
2020
, “
Multi-agent Routing Value Iteration Network
,”
International Conference on Machine Learning
,
Virtual
,
July 12–18
.
46.
Dai
,
H.
,
Khalil
,
E. B.
,
Zhang
,
Y.
,
Dilkina
,
B.
, and
Song
,
L.
,
2017
, “
Learning Combinatorial Optimization Algorithms Over Graphs
,”
Advances in Neural Information Processing Systems
,
Long Beach Convention Center, CA
,
Dec. 4–9
.
47.
Paul
,
S.
,
Ghassemi
,
P.
, and
Chowdhury
,
S.
,
2022
, “
Learning Scalable Policies Over Graphs for Multi-robot Task Allocation Using Capsule Attention Networks
,”
International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
8815
8822
.
48.
Paul
,
S.
, and
Chowdhury
,
S.
,
2022
, “
A Scalable Graph Learning Approach to Capacitated Vehicle Routing Problem Using Capsule Networks and Attention Mechanism
,”
International Conference on Machine Learning
,
St. Louis, MO
,
Aug. 14–17
.
49.
Strens
,
M.
, and
Windelinckx
,
N.
,
2005
, “Combining Planning With Reinforcement Learning for Multi-robot Task Allocation,”
Adaptive Agents and Multi-agent Systems II
,
D.
Kudenko
,
D.
Kazakov
, and
E.
Alonso
, eds,
Springer
,
Berlin
, pp.
260
274
.
50.
Wang
,
Z.
, and
Gombolay
,
M.
,
2020
, “
Learning Scheduling Policies for Multi-robot Coordination With Graph Attention Networks
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4509
4516
.
51.
Hy
,
T. S.
,
Trivedi
,
S.
,
Pan
,
H.
,
Anderson
,
B. M.
, and
Kondor
,
R.
,
2018
, “
Predicting Molecular Properties With Covariant Compositional Networks
,”
J. Chem. Phys.
,
148
(
24
), p.
241745
.
52.
Jacob
,
R. A.
,
Paul
,
S.
,
Chowdhury
,
S.
,
Gel
,
Y. R.
, and
Zhang
,
J.
,
2024
, “
Real-Time Outage Management in Active Distribution Networks Using Reinforcement Learning Over Graphs
,”
Nat. Commun.
,
15
(
1
), p.
4766
.
53.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Advances in Neural Information Processing Systems
,
Long Beach Convention Center, CA
,
Dec. 4–9
.
54.
Paul
,
S.
,
Li
,
W.
,
Smyth
,
B.
,
Chen
,
Y.
,
Gel
,
Y.
, and
Chowdhury
,
S.
,
2023
, “
Efficient Planning of Multi-robot Collective Transport Using Graph Reinforcement Learning With Higher Order Topological Abstraction
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
5779
5785
.
55.
Hamilton
,
W.
,
Ying
,
Z.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
Advances in Neural Information Processing Systems
,
Long Beach Convention Center, CA
,
Dec. 4–9
.
56.
Verma
,
S.
, and
Zhang
,
Z.-L.
,
2018
, “
Graph Capsule Convolutional Neural Networks
,”
Stat
,
1050
, p.
26
. https://api.semanticscholar.org/CorpusID:29155646
57.
Paul
,
S.
,
2024
, “adamslab-ub/CAM_ASME_JCISE: Version1.0,”
58.
Force
,
U. T.
,
2011
, “Unmanned Aircraft System Airspace Integration Plan,” Department of Defense.
59.
Karp
,
R. M.
,
1980
, “
An Algorithm to Solve the m×N Assignment Problem in Expected Time O (mn Log n)
,”
Networks
,
10
(
2
), pp.
143
152
.
You do not currently have access to this content.