Abstract

In the past decade, human digital twins (HDTs) attracted attention in both digital twin (DT) applications and beyond. In this paper, we discuss the concept and the development of HDTs, focusing on their architecture, key enabling technologies, and (potential) applications. Based on the literature, we identify personal data, model, and interface as three key modules in the proposed HDT architecture, supported by a data lake of human data and a model and interface library. Regarding the key enabling technologies that support the HDT functions, we envision that the internet of things (IoT) infrastructure, data security, wearables, human modeling, explainable artificial intelligence (AI), minimum viable sensing, and data visualization are closely associated with the development of HDTs. Finally, we investigate current applications of HDTs, with a particular emphasis on the opportunities that arise from leveraging HDTs in the field of personalized product design.

References

1.
Danette Allen
,
B.
,
2021
, “
Digital Twins and Living Models at Nasa
,”
ASME Digital Twin Summit
,
Virtual
,
Nov. 1
.
2.
Grieves
,
M.
, and
Vickers
,
J.
,
2016
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems
,
F-J.
Kahlen
,
S.
Flumerfelt
, and
A.
Alves
, eds.,
Springer
,
Cham, Swiss
, pp.
85
113
.
3.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
4.
Wright
,
L.
, and
Davidson
,
S.
,
2020
, “
How to Tell the Difference Between a Model and a Digital Twin
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
1
), p.
13
.
5.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, pp.
108952
108971
.
6.
Saeed
,
Z.
,
Mancini
,
F.
,
Glusac
,
T.
, and
Izadpanahi
,
P.
,
2022
, “
Future City, Digital Twinning and the Urban Realm: A Systematic Literature Review
,”
Buildings
,
12
(
5
), p.
685
.
7.
Deng
,
T.
,
Zhang
,
K.
, and
(Max) Shen
,
Z.-J.
,
2021
, “
A Systematic Review of a Digital Twin City: A New Pattern of Urban Governance Toward Smart Cities
,”
J. Manag. Sci. Eng.
,
6
(
2
), pp.
125
134
.
8.
Panetta
,
K.
,
2021
, “
Gartner Top Strategic Technology Trends for 2021
,” Gartner [Online], https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021, Accessed August 1, 2023.
9.
Melesse
,
T. Y.
,
Di Pasquale
,
V.
, and
Riemma
,
S.
,
2020
, “
Digital Twin Models in Industrial Operations: A Systematic Literature Review
,”
Procedia Manuf.
,
42
, pp.
267
272
.
10.
Clausen
,
A.
,
Arendt
,
K.
,
Johansen
,
A.
,
Sangogboye
,
F. C.
,
Kjærgaard
,
M. B.
,
Veje
,
C. T.
, and
Jørgensen
,
B. N.
,
2021
, “
A Digital Twin Framework for Improving Energy Efficiency and Occupant Comfort in Public and Commercial Buildings
,”
Energy Inf.
,
4
(
S2
), p.
40
.
11.
Pan
,
M.
,
Xing
,
Q.
,
Chai
,
Z.
,
Zhao
,
H.
,
Sun
,
Q.
, and
Duan
,
D.
,
2023
, “
Real-Time Digital Twin Machine Learning-Based Cost Minimization Model for Renewable-Based Microgrids Considering Uncertainty
,”
Sol. Energy
,
250
, pp.
355
367
.
12.
He
,
B.
, and
Bai
,
K.-J.
,
2021
, “
Digital Twin-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
,
9
(
1
), pp.
1
21
.
13.
van Dinter
,
R.
,
Tekinerdogan
,
B.
, and
Catal
,
C.
,
2022
, “
Predictive Maintenance Using Digital Twins: A Systematic Literature Review
,”
Inf. Softw. Technol.
,
151
, p.
107008
.
14.
Dahlan
,
A.
, and
Widanarko
,
B.
,
2022
, “
Impact of Occupational Fatigue on Human Performance Among Oil and Gas Workers in Indonesia
,”
Kesmas
,
17
(
1
), pp.
54
59
.
15.
Geselschap
,
C.
,
Meskers
,
G.
,
Van Dijk
,
R.
, and
Van Winsen
,
I.
,
2019
, “
Digital Twin—Engineering With the Human Factor in the Loop
,”
The Offshore Technology Conference
,
Houston, TX
,
May 6–9
.
16.
Onan Demirel
,
H.
,
Irshad
,
L.
,
Ahmed
,
S.
, and
Tumer
,
I. Y.
,
2021
, “
Digital Twin-Driven Human-Centered Design Frameworks for Meeting Sustainability Objectives
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031012
.
17.
Peruzzini
,
M.
,
Grandi
,
F.
, and
Pellicciari
,
M.
,
2020
, “
Exploring the Potential of Operator 4.0 Interface and Monitoring
,”
Comput. Ind. Eng.
,
139
, p.
105600
.
18.
Segura
,
Á.
,
Diez
,
H. V.
,
Barandiaran
,
I.
,
Arbelaiz
,
A.
,
Álvarez
,
H.
,
Simões
,
B.
,
Posada
,
J.
,
García-Alonso
,
A.
, and
Ugarte
,
R.
,
2020
, “
Visual Computing Technologies to Support the Operator 4.0
,”
Comput. Ind. Eng.
,
139
, p.
105550
.
19.
Nguyen
,
T. N.
,
2022
, “
Toward Human Digital Twins for Cybersecurity Simulations on the Metaverse: Ontological and Network Science Approach
,”
JMIRx Med.
,
3
(
2
), p.
e33502
.
20.
He
,
B.
,
Song
,
Y.
, and
Wang
,
Y.
,
2021
, “
Digital Twin-Driven Design and Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030301
.
21.
N. Interagency Modeling and Analysis Group
,
2019
, “
Digital Twin Overview
,” [Online], https://www.imagwiki.nibib.nih.gov/content/digital-twin-overview, Accessed August 1, 2023.
22.
Barricelli
,
B. R.
,
Casiraghi
,
E.
, and
Fogli
,
D.
,
2019
, “
A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications
,”
IEEE Access
,
7
(
Ml
), pp.
167653
167671
.
23.
Barricelli
,
B. R.
,
Casiraghi
,
E.
,
Gliozzo
,
J.
,
Petrini
,
A.
, and
Valtolina
,
S.
,
2020
, “
Human Digital Twin for Fitness Management
,”
IEEE Access
,
8
, pp.
26637
26664
.
24.
Toshima
,
I.
,
Kobashikawa
,
S.
,
Noto
,
H.
,
Kurahashi
,
T.
,
Hirota
,
K.
, and
Ozawa
,
S.
,
2020
, “
Challenges Facing Human Digital Twin Computing and Its Future Prospects
,”
NTT Tech. Rev.
,
18
(
9
), pp.
19
24
.
25.
Chmiel
,
J.
,
2022
, “
Human Digital Twins vs Digital Twins
,” [Online], https://www.avenga.com/magazine/human-digital-twins/, Accessed August 1, 2023.
26.
Miller
,
M. E.
, and
Spatz
,
E.
,
2022
, “
A Unified View of a Human Digital Twin
,”
Human-Intell. Syst. Integr.
,
4
(
1–2
), pp.
23
33
.
27.
Sparrow
,
D.
,
Kruger
,
K.
, and
Basson
,
A.
,
2019
, “
Human Digital Twin for Integrating Human Workers in Industry 4.0
,”
COMA’19: International Conference on Competitive Manufacturing
,
Stellenbosch, South Africa
,
Mar. 9–10
.
28.
Zibuschka
,
J.
,
Ruff
,
C.
,
Horch
,
A.
, and
Roßnagel
,
H.
,
2020
, “
A Human Digital Twin as Building Block of Open Identity Management for the Internet of Things
,”
Open Identity Summit 2020
,
Copenhagen, Denmark
,
May 26–27
.
29.
Sahal
,
R.
,
Alsamhi
,
S. H.
, and
Brown
,
K. N.
,
2022
, “
Personal Digital Twin: A Close Look Into the Present and a Step Towards the Future of Personalised Healthcare Industry
,”
Sensors
,
22
(
15
), p.
5918
.
30.
Löcklin
,
A.
,
Jung
,
T.
,
Jazdi
,
N.
,
Ruppert
,
T.
, and
Weyrich
,
M.
,
2021
, “
Architecture of a Human-Digital Twin as Common Interface for Operator 4.0 Applications
,”
Procedia CIRP
,
104
, pp.
458
463
.
31.
Lauer-Schmaltz
,
M. W.
,
Cash
,
P.
,
Hansen
,
J. P.
, and
Maier
,
A.
,
2022
, “
Designing Human Digital Twins for Behaviour-Changing Therapy and Rehabilitation: A Systematic Review
,”
Proc. Des. Soc.
,
2
, pp.
1303
1312
.
32.
Anjani
,
S.
,
Kühne
,
M.
,
Naddeo
,
A.
,
Frohriep
,
S.
,
Mansfield
,
N.
,
Song
,
Y.
, and
Vink
,
P.
,
2021
, “
PCQ: Preferred Comfort Questionnaires for Product Design
,”
Work
,
68
(
s1
), pp.
S19
S28
.
33.
Microsoft
,
2022
, “
Azure Kinect DK Hardware Specifications
,” [Online], https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification, Accessed August 1, 2023.
34.
Tajdari
,
F.
,
Huysmans
,
T.
,
Yao
,
X.
,
Xu
,
J.
, and
Song
,
Y.
,
2023
, “
4D Feet: Registering Walking Foot Shapes Using Attention Enhanced Dynamic-Synchronized Graph Convolutional LSTM Network
,”
preprint arXiv
, pp.
1
11
. https://arxiv.org/abs/2307.12377v1
35.
Millard
,
M.
, and
Mombaur
,
K.
,
2019
, “
A Quick Turn of Foot: Rigid Foot-Ground Contact Models for Human Motion Prediction
,”
Front. Neurorobot.
,
13
, pp.
1
13
.
36.
Fintz
,
M.
,
Osadchy
,
M.
, and
Hertz
,
U.
,
2022
, “
Using Deep Learning to Predict Human Decisions and Using Cognitive Models to Explain Deep Learning Models
,”
Sci. Rep.
,
12
(
1
), p.
4736
.
37.
Cao
,
Z.
,
Hidalgo
,
G.
,
Simon
,
T.
,
Wei
,
S.-E.
, and
Sheikh
,
Y.
,
2021
, “
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
1
), pp.
172
186
.
38.
Sun
,
K.
,
Xiao
,
B.
,
Liu
,
D.
, and
Wang
,
J.
,
2019
, “
Deep High-Resolution Representation Learning for Human Pose Estimation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
5686
5696
.
39.
Scheifele
,
C.
,
Verl
,
A.
, and
Riedel
,
O.
,
2019
, “
Real-Time Co-Simulation for the Virtual Commissioning of Production Systems
,”
Procedia CIRP
,
79
, pp.
397
402
.
40.
Jiang
,
J.
,
Tobia
,
M.
,
Lawther
,
R.
,
Branchaud
,
D.
, and
Bednarz
,
T.
,
2020
, “
Double Vision: Digital Twin Applications Within Extended Reality
,”
ACM SIGGRAPH 2020
,
Virtual
,
Aug. 24–27
, pp.
1
2
.
41.
Cascini
,
G.
,
O’Hare
,
J.
,
Dekoninck
,
E.
,
Becattini
,
N.
,
Boujut
,
J.-F.
,
Ben Guefrache
,
F.
,
Carli
,
I.
,
Caruso
,
G.
,
Giunta
,
L.
, and
Morosi
,
F.
,
2020
, “
Exploring the Use of AR Technology for Co-Creative Product and Packaging Design
,”
Comput. Ind.
,
123
, p.
103308
.
42.
Buhalis
,
D.
,
Lin
,
M. S.
, and
Leung
,
D.
,
2022
, “
Metaverse as a Driver for Customer Experience and Value Co-Creation: Implications for Hospitality and Tourism Management and Marketing
,”
Int. J. Contemp. Hosp. Manage.
,
35
(
2
), pp.
701
716
.
43.
Liu
,
Z.
,
Luo
,
P.
,
Wang
,
X.
, and
Tang
,
X.
,
2015
, “
Deep Learning Face Attributes in the Wild
,”
Proceedings of the IEEE International Conference on Computer Vision 2015
,
Washington, DC
,
Dec. 7–13
, pp.
3730
3738
.
44.
DINED
,
2011
, “
Anthropometric Database TU Delft Ergonomics
,” Dined.Nl, [Online], http://dined.io.tudelft.nl/ergonomics/, Accessed August 1, 2023.
45.
Kim
,
H. G.
,
Cheon
,
E. J.
,
Bai
,
D. S.
,
Lee
,
Y. H.
, and
Koo
,
B. H.
,
2018
, “
Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature
,”
Psychiatry Invest.
,
15
(
3
), pp.
235
245
.
46.
Choi
,
K.-H.
,
Kim
,
J.
,
Kwon
,
O. S.
,
Kim
,
M. J.
,
Ryu
,
Y. H.
, and
Park
,
J.-E.
,
2017
, “
Is Heart Rate Variability (HRV) an Adequate Tool for Evaluating Human Emotions?—A Focus on the Use of the International Affective Picture System (IAPS)
,”
Psychiatry Res.
,
251
, pp.
192
196
.
47.
Yang
,
Y.
,
Yuan
,
T.
,
Huysmans
,
T.
,
Elkhuizen
,
W. S.
,
Tajdari
,
F.
, and
Song
,
Y.
,
2021
, “
Posture-Invariant Three Dimensional Human Hand Statistical Shape Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031006
.
48.
Schneider
,
J.
, and
Vlachos
,
M.
,
2020
, “
Personalization of Deep Learning
,”
Data Science–Analytics and Applications: Proceedings of the 3rd International Data Science Conference–iDSC2020
,
Virtual
,
May 13
.
49.
Saeedi
,
R.
,
Sasani
,
K.
,
Norgaard
,
S.
, and
Gebremedhin
,
A. H.
,
2018
, “
Personalized Human Activity Recognition Using Wearables: A Manifold Learning-Based Knowledge Transfer
,”
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Honolulu, HI
,
July 18–21
, pp.
89
96
.
50.
Song
,
Y. W.
, and
Vink
,
P.
,
2021
, “
On the Objective Assessment of Comfort
,”
The 3rd International Comfort Congress
,
Nottingham, UK
,
Sept. 6–7
.
51.
Firouzi
,
F.
,
Farahani
,
B.
, and
Marinšek
,
A.
,
2022
, “
The Convergence and Interplay of Edge, Fog, and Cloud in the AI-Driven Internet of Things (IoT)
,”
Inf. Syst.
,
107
, p.
101840
.
52.
Pfülb
,
B.
,
2022
, “
Continual Learning With Deep Learning Methods in an Application-Oriented Context
,”
Hochschule Fulda
.
53.
Xu
,
D.
,
Zhou
,
A.
,
Wang
,
G.
,
Zhang
,
H.
,
Li
,
X.
,
Pei
,
J.
, and
Ma
,
H.
,
2022
, “
Tutti: Coupling 5G RAN and Mobile Edge Computing for Latency-Critical Video Analytics
,”
Proceedings of the 28th Annual International Conference on Mobile Computing and Networking
,
Sydney, Australia
,
Oct. 17–21
, pp.
729
742
.
54.
Nelson
,
B.
, and
Olovsson
,
T.
,
2016
, “
Security and Privacy for Big Data: A Systematic Literature Review
,”
2016 IEEE International Conference on Big Data (Big Data)
,
Washington, DC
,
Dec. 5–8
, pp.
3693
3702
.
55.
Dai
,
F.
,
Shi
,
Y.
,
Meng
,
N.
,
Wei
,
L.
, and
Ye
,
Z.
,
2017
, “
From Bitcoin to Cybersecurity: A Comparative Study of Blockchain Application and Security Issues
,”
4th International Conference on Systems and Informatics (ICSAI)
,
Hangzhou, China
,
Nov. 11–13
, pp.
975
979
.
56.
Götz
,
C. S.
,
Karlsson
,
P.
, and
Yitmen
,
I.
,
2022
, “
Exploring Applicability, Interoperability and Integrability of Blockchain-Based Digital Twins for Asset Life Cycle Management
,”
Smart Sustain. Manuf. Syst.
,
11
(
3
), pp.
532
558
.
57.
Liu
,
J.
,
Zhang
,
L.
,
Li
,
C.
,
Bai
,
J.
,
Lv
,
H.
, and
Lv
,
Z.
,
2022
, “
Blockchain-Based Secure Communication of Intelligent Transportation Digital Twins System
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
11
), pp.
22630
22640
.
58.
Sahal
,
R.
,
Alsamhi
,
S. H.
,
Brown
,
K. N.
,
O’Shea
,
D.
, and
Alouffi
,
B.
,
2022
, “
Blockchain-Based Digital Twins Collaboration for Smart Pandemic Alerting: Decentralized COVID-19 Pandemic Alerting Use Case
,”
Comput. Intell. Neurosci.
,
2022
, pp.
1
14
.
59.
Mirchandani
,
A.
,
2019
, “
The GDPR-Blockchain Paradox: Exempting Permissioned Blockchains From the GDPR Recommended Citation
,”
Fordham Intell. Prop. Media Entertain. Law J.
,
29
(
4
), p.
2019
.
60.
Agarwal
,
S.
,
Kirrane
,
S.
, and
Scharf
,
J.
,
2016
, “
REGULATION (EU) 2016/679: The Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation)
,”
Eur. Parliam. Counc. Eur. UNION
.
61.
Vrigkas
,
M.
,
Nikou
,
C.
, and
Kakadiaris
,
I. A.
,
2015
, “
A Review of Human Activity Recognition Methods
,”
Front. Rob. AI
,
2
, pp.
1
28
.
62.
Statista
,
2023
, “
Number of Connected Wearable Devices Worldwide From 2016 to 2022
,” [Online], https://www.statista.com/statistics/487291/global-connected-wearable-devices/, Accessed August 1, 2023.
63.
Alavi
,
A.
,
Bogu
,
G. K.
,
Wang
,
M.
,
Rangan
,
E. S.
,
Brooks
,
A. W.
,
Wang
,
Q.
,
Higgs
,
E.
, et al
,
2022
, “
Real-Time Alerting System for COVID-19 and Other Stress Events Using Wearable Data
,”
Nat. Med.
,
28
(
1
), pp.
175
184
.
64.
Uddin
,
M. Z.
, and
Soylu
,
A.
,
2021
, “
Human Activity Recognition Using Wearable Sensors, Discriminant Analysis, and Long Short-Term Memory-Based Neural Structured Learning
,”
Sci. Rep.
,
11
(
1
), p.
16455
.
65.
Wallen
,
M. P.
,
Gomersall
,
S. R.
,
Keating
,
S. E.
,
Wisløff
,
U.
, and
Coombes
,
J. S.
,
2016
, “
Accuracy of Heart Rate Watches: Implications for Weight Management
,”
PLoS One
,
11
(
5
), p.
e0154420
.
66.
Bhaskaran
,
K. A.
,
Nair
,
A. G.
,
Ram
,
K. D.
,
Ananthanarayanan
,
K.
, and
Nandi Vardhan
,
H. R.
,
2016
, “
Smart Gloves for Hand Gesture Recognition: Sign Language to Speech Conversion System
,”
2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
,
India
,
Dec. 18–20
, pp.
1
6
.
67.
Skals
,
S.
,
Bláfoss
,
R.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Andersen
,
L. L.
,
2021
, “
Manual Material Handling in the Supermarket Sector. Part 1: Joint Angles and Muscle Activity of Trapezius Descendens and Erector Spinae Longissimus
,”
Appl. Ergon.
,
92
, p.
103340
.
68.
Xsens
,
2022
, “
Motion Capture
,” [Online], https://www.xsens.com/motion-capture, Accessed August 1, 2023.
69.
Brickwood
,
K.-J.
,
Watson
,
G.
,
O’Brien
,
J.
, and
Williams
,
A. D.
,
2019
, “
Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis
,”
JMIR mHealth uHealth
,
7
(
4
), p.
e11819
.
70.
Ferguson
,
T.
,
Olds
,
T.
,
Curtis
,
R.
,
Blake
,
H.
,
Crozier
,
A. J.
,
Dankiw
,
K.
,
Dumuid
,
D.
,
Kasai
,
D.
,
O’Connor
,
E.
,
Virgara
,
R.
, and
Maher
,
C.
,
2022
, “
Effectiveness of Wearable Activity Trackers to Increase Physical Activity and Improve Health: A Systematic Review of Systematic Reviews and Meta-Analyses
,”
Lancet Digital Health
,
4
(
8
), pp.
e615
e626
.
71.
Song
,
Y.
, and
van der Cammen
,
T. J. M.
,
2019
, “
Electronic Assistive Technology for Community-Dwelling Solo-Living Older Adults: A Systematic Review
,”
Maturitas
,
125
, pp.
50
56
.
72.
Montero-Odasso
,
M.
,
van der Velde
,
N.
,
Martin
,
F. C.
,
Petrovic
,
M.
,
Tan
,
M. P.
,
Ryg
,
J.
,
Aguilar-Navarro
,
S.
, et al
,
2022
, “
World Guidelines for Falls Prevention and Management for Older Adults: A Global Initiative
,”
Age Ageing
,
51
(
9
), p.
afac205
.
73.
Dunne
,
L. E.
,
Profita
,
H.
,
Zeagler
,
C.
,
Clawson
,
J.
,
Gilliland
,
S.
,
Do
,
E. Y. L.
, and
Budd
,
J.
,
2014
, “
The Social Comfort of Wearable Technology and Gestural Interaction
,”
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
,
Aug. 26–30
, pp.
4159
4162
.
74.
Liang
,
J.
,
Xian
,
D.
,
Liu
,
X.
,
Fu
,
J.
,
Zhang
,
X.
,
Tang
,
B.
, and
Lei
,
J.
,
2018
, “
Usability Study of Mainstream Wearable Fitness Devices: Feature Analysis and System Usability Scale Evaluation
,”
JMIR mHealth uHealth
,
6
(
11
), p.
e11066
.
75.
Reeder
,
B.
, and
David
,
A.
,
2016
, “
Health at Hand: A Systematic Review of Smart Watch Uses for Health and Wellness
,”
J. Biomed. Inform.
,
63
, pp.
269
276
.
76.
Yang
,
Y.
,
Xu
,
J.
,
Elkhuizen
,
W. S.
, and
Song
,
Y.
,
2021
, “
The Development of a Low-Cost Photogrammetry-Based 3D Hand Scanner
,”
HardwareX
,
10
, p.
e00212
.
77.
Song
,
Y.
,
Yao
,
X.
,
Herbig
,
B.
,
Vink
,
P.
, and
Mansfield
,
N. J.
,
2023
, “
Development of a Passenger Comfort Model for Turboprops
,”
The Fourth International Comfort Congress
,
Amberg, Germany
,
Sept. 6–7
.
78.
Hernandez-Boussard
,
T.
,
Macklin
,
P.
,
Greenspan
,
E. J.
,
Gryshuk
,
A. L.
,
Stahlberg
,
E.
,
Syeda-Mahmood
,
T.
, and
Shmulevich
,
I.
,
2021
, “
Digital Twins for Predictive Oncology Will be a Paradigm Shift for Precision Cancer Care
,”
Nat. Med.
,
27
(
12
), pp.
2065
2066
.
79.
Batch
,
K. E.
,
Yue
,
J.
,
Darcovich
,
A.
,
Lupton
,
K.
,
Liu
,
C. C.
,
Woodlock
,
D. P.
,
El Amine
,
M. A. K.
, et al
,
2022
, “
Developing a Cancer Digital Twin: Supervised Metastases Detection From Consecutive Structured Radiology Reports
,”
Front. Artif. Intell.
,
5
, pp.
1
10
.
80.
Niederer
,
S. A.
,
Aboelkassem
,
Y.
,
Cantwell
,
C. D.
,
Corrado
,
C.
,
Coveney
,
S.
,
Cherry
,
E. M.
,
Delhaas
,
T.
, et al
,
2020
, “
Creation and Application of Virtual Patient Cohorts of Heart Models
,”
Philos. Trans. R. Soc. A
,
378
(
2173
), p.
20190558
.
81.
Sun
,
Z.
,
Lau
,
I.
,
Wong
,
Y. H.
, and
Yeong
,
C. H.
,
2019
, “
Personalized Three-Dimensional Printed Models in Congenital Heart Disease
,”
J. Clin. Med.
,
8
(
4
), p.
522
.
82.
Lauzeral
,
N.
,
Borzacchiello
,
D.
,
Kugler
,
M.
,
George
,
D.
,
Rémond
,
Y.
,
Hostettler
,
A.
, and
Chinesta
,
F.
,
2019
, “
A Model Order Reduction Approach to Create Patient-Specific Mechanical Models of Human Liver in Computational Medicine Applications
,”
Comput. Methods Programs Biomed.
,
170
, pp.
95
106
.
83.
Denizdurduran
,
B.
,
Markram
,
H.
, and
Gewaltig
,
M.-O.
,
2022
, “
Optimum Trajectory Learning in Musculoskeletal Systems With Model Predictive Control and Deep Reinforcement Learning
,”
Biol. Cybern.
,
116
(
5–6
), pp.
711
726
.
84.
OpenSim Team
,
2023
, “
OpenSim
,” [Online], https://simtk.org/projects/opensim, Accessed August 1, 2023.
85.
Ahmadian
,
H.
,
Mageswaran
,
P.
,
Walter
,
B. A.
,
Blakaj
,
D. M.
,
Bourekas
,
E. C.
,
Mendel
,
E.
,
Marras
,
W. S.
, and
Soghrati
,
S.
,
2022
, “
A Digital Twin for Simulating the Vertebroplasty Procedure and Its Impact on Mechanical Stability of Vertebra in Cancer Patients
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
6
), p.
e3600
.
86.
Kim
,
J.-K.
,
Lee
,
S.-J.
,
Hong
,
S.-H.
, and
Choi
,
I.-Y.
,
2022
, “
Machine-Learning-Based Digital Twin System for Predicting the Progression of Prostate Cancer
,”
Appl. Sci.
,
12
(
16
), p.
8156
.
87.
Ackerman
,
M. J.
,
1998
, “
The Visible Human Project
,”
Proc. IEEE
,
86
(
3
), pp.
504
511
.
88.
Microsoft
,
2023
, “
Azure Kinect DK—Develop AI Models | Microsoft Azure
,” [Online], https://azure.microsoft.com/en-us/products/kinect-dk, Accessed August 1, 2023.
89.
Baran
,
I.
, and
Popović
,
J.
,
2007
, “
Automatic Rigging and Animation of 3D Characters
,”
ACM Trans. Graph.
,
26
(
3
), p.
72
.
90.
Korban
,
M.
, and
Li
,
X.
,
2022
, “
A Survey on Applications of Digital Human Avatars Toward Virtual Co-Presence
,” arXiv preprint 2201.04168.
91.
Manometric
,
2023
, “
Perfectly Fitting Braces and Splints
,” [Online], https://www.manometric.nl/en/products/, Accessed August 1, 2023.
92.
Romero
,
J.
,
Tzionas
,
D.
, and
Black
,
M. J.
,
2017
, “
Embodied Hands: Modeling and Capturing Hands and Bodies Together
,”
ACM Trans. Graph.
,
36
(
6
), pp.
1
17
.
93.
Florea
,
A.
,
Lobov
,
A.
, and
Lanz
,
M.
,
2020
, “
Emotions-Aware Digital Twins for Manufacturing
,”
Procedia Manuf.
,
51
, pp.
605
612
.
94.
Gu
,
S.
,
Wang
,
F.
,
Patel
,
N. P.
,
Bourgeois
,
J. A.
, and
Huang
,
J. H.
,
2019
, “
A Model for Basic Emotions Using Observations of Behavior in Drosophila
,”
Front. Psychol.
,
10
, pp.
1
13
.
95.
Sekiya
,
T.
,
Miwa
,
Z.
,
Tsuchihashi
,
N.
,
Uehara
,
N.
, and
Sugimoto
,
K.
,
2015
, “
Analysis of Physiological Responses Associated With Emotional Changes Induced by Viewing Video Images of Dental Treatments
,”
J. Med. Dent. Sci.
,
62
(
1
), pp.
11
18
.
96.
Mellouk
,
W.
, and
Handouzi
,
W.
,
2020
, “
Facial Emotion Recognition Using Deep Learning: Review and Insights
,”
Procedia Comput. Sci.
,
175
, pp.
689
694
.
97.
Marsch
,
L. A.
,
2021
, “
Digital Health Data-Driven Approaches to Understand Human Behavior
,”
Neuropsychopharmacology
,
46
(
1
), pp.
191
196
.
98.
OpenAI
,
2023
, “
GPT-4 Technical Report
,” preprint arXiv2303.08774v3.
99.
Schürmann
,
T.
, and
Beckerle
,
P.
,
2020
, “
Personalizing Human-Agent Interaction Through Cognitive Models
,”
Front. Psychol.
,
11
, pp.
1
7
.
100.
Graus
,
M. P.
, and
Ferwerda
,
B.
,
2019
, “Theory-Grounded User Modeling for Personalized HCI,”
Personalized Human–Computer Interaction
,
M.
Augstein
,
E.
Herder
, and
W.
Wörndl
, eds.,
De Gruyter
,
Berlin, Germany
, pp.
1
30
.
101.
Davis
,
R.
,
Campbell
,
R.
,
Hildon
,
Z.
,
Hobbs
,
L.
, and
Michie
,
S.
,
2015
, “
Theories of Behaviour and Behaviour Change Across the Social and Behavioural Sciences: A Scoping Review
,”
Health Psychol. Rev.
,
9
(
3
), pp.
323
344
.
102.
Tyshchuk
,
Y.
, and
Wallace
,
W. A.
,
2018
, “
Modeling Human Behavior on Social Media in Response to Significant Events
,”
IEEE Trans. Comput. Soc. Syst.
,
5
(
2
), pp.
444
457
.
103.
Phan
,
N.
,
Dou
,
D.
,
Piniewski
,
B.
, and
Kil
,
D.
,
2016
, “
A Deep Learning Approach for Human Behavior Prediction With Explanations in Health Social Networks: Social Restricted Boltzmann Machine (SRBM+)
,”
Soc. Netw. Anal. Min.
,
6
(
1
), p.
79
.
104.
Davis
,
J.
,
Wolff
,
H.-G.
,
Forret
,
M. L.
, and
Sullivan
,
S. E.
,
2020
, “
Networking Via LinkedIn: An Examination of Usage and Career Benefits
,”
J. Vocat. Behav.
,
118
, p.
103396
.
105.
Rajkumar
,
K.
,
Saint-Jacques
,
G.
,
Bojinov
,
I.
,
Brynjolfsson
,
E.
, and
Aral
,
S.
,
2022
, “
A Causal Test of the Strength of Weak Ties
,”
Science
,
377
(
6612
), pp.
1304
1310
.
106.
Luceri
,
L.
,
Braun
,
T.
, and
Giordano
,
S.
,
2019
, “
Analyzing and Inferring Human Real-Life Behavior Through Online Social Networks With Social Influence Deep Learning
,”
Appl. Netw. Sci.
,
4
(
1
), p.
34
.
107.
National Human Genome Research Institute
,
2018
, “
Genetics vs. Genomics Fact Sheet
,” [Online], https://www.genome.gov/about-genomics/fact-sheets/Genetics-vs-Genomics, Accessed August 1, 2023.
108.
Charmaraman
,
L.
, and
Grossman
,
J. M.
,
2010
, “
Importance of Race and Ethnicity: An Exploration of Asian, Black, Latino, and Multiracial Adolescent Identity
,”
Cult. Divers. Ethn. Minor. Psychol.
,
16
(
2
), pp.
144
151
.
109.
Lang
,
J.
,
2016
, “
Mathematical Modelling of Social Factors in Decision Making Processes at the Individual and Population Levels
,”
UWSpace
.
110.
Mollahosseini
,
A.
,
Hasani
,
B.
, and
Mahoor
,
M. H.
,
2017
,
IEEE Transactions on Affective Computing
, Vol.
10
, pp.
1
18
.
111.
Huang
,
S.
,
Yang
,
J.
,
Fong
,
S.
, and
Zhao
,
Q.
,
2020
, “
Artificial Intelligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges
,”
Cancer Lett.
,
471
, pp.
61
71
.
112.
Krishna
,
K.
,
Jain
,
D.
,
Mehta
,
S. V.
, and
Choudhary
,
S.
,
2018
, “
An LSTM Based System for Prediction of Human Activities With Durations
,”
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
,
1
(
4
), pp.
1
31
.
113.
Rožanec
,
J. M.
,
Lu
,
J.
,
Rupnik
,
J.
,
Škrjanc
,
M.
,
Mladenić
,
D.
,
Fortuna
,
B.
,
Zheng
,
X.
, and
Kiritsis
,
D.
,
2022
, “
Actionable Cognitive Twins for Decision Making in Manufacturing
,”
Int. J. Prod. Res.
,
60
(
2
), pp.
452
478
.
114.
Bavarian
,
M.
,
Jun
,
H.
,
Tezak
,
N.
,
Schulman
,
J.
,
McLeavey
,
C.
,
Tworek
,
J.
, and
Chen
,
M.
,
2022
, “
Efficient Training of Language Models to Fill in the Middle
,” preprint arXiv2207.14255.
115.
Zhang
,
J.
, and
Besier
,
T. F.
,
2017
, “
Accuracy of Femur Reconstruction From Sparse Geometric Data Using a Statistical Shape Model
,”
Comput. Meth. Biomech. Biomed. Eng.
,
20
(
5
), pp.
566
576
.
116.
Rudin
,
C.
, and
Radin
,
J.
,
2019
, “
Why Are We Using Black Box Models in AI When We Don’t Need To? A Lesson From an Explainable AI Competition
,”
Harvard Data Sci. Rev.
,
1
(
2
).
117.
Vilone
,
G.
, and
Longo
,
L.
,
2020
, “
Explainable Artificial Intelligence: A Systematic Review
,” preprint arXiv 2006.00093.
118.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, Section 2, pp.
4766
4775
.
119.
Lundberg
,
S. M.
,
Erion
,
G.
,
Chen
,
H.
,
DeGrave
,
A.
,
Prutkin
,
J. M.
,
Nair
,
B.
,
Katz
,
R.
,
Himmelfarb
,
J.
,
Bansal
,
N.
, and
Lee
,
S.-I.
,
2020
, “
From Local Explanations to Global Understanding With Explainable AI for Trees
,”
Nat. Mach. Intell.
,
2
(
1
), pp.
56
67
.
120.
Korobov
,
M.
, and
Konstantin
,
L.
,
2021
, “
ELI5
,” [Online], https://eli5.readthedocs.io/, Accessed August 1, 2023.
121.
Yosinski
,
J.
,
2023
, “
Deep Visualization Toolbox
,”
Deep Visualization Toolbox
, [Online], https://github.com/yosinski/deep-visualization-toolbox, Accessed August 1, 2023.
122.
Yang
,
Y.
,
Zhou
,
H.
,
Song
,
Y.
, and
Vink
,
P.
,
2021
, “
Identify Dominant Dimensions of 3D Hand Shapes Using Statistical Shape Model and Deep Neural Network
,”
Appl. Ergon.
,
96
, p.
103462
.
123.
Aselmaa
,
A.
,
van Herk
,
M.
,
Laprie
,
A.
,
Nestle
,
U.
,
Götz
,
I.
,
Wiedenmann
,
N.
,
Schimek-Jasch
,
T.
, et al
,
2017
, “
Using a Contextualized Sensemaking Model for Interaction Design: A Case Study of Tumor Contouring
,”
J. Biomed. Inform.
,
65
, pp.
145
158
.
124.
Li
,
Q.
,
2020
, “Overview of Data Visualization,”
Embodying Data
,
Q.
Li
, ed.,
Springer Singapore
,
Singapore
, pp.
17
47
.
125.
Scheer
,
J.
,
Volkert
,
A.
,
Brich
,
N.
,
Weinert
,
L.
,
Santhanam
,
N.
,
Krone
,
M.
,
Ganslandt
,
T.
,
Boeker
,
M.
, and
Nagel
,
T.
,
2022
, “
Visualization Techniques of Time-Oriented Data for the Comparison of Single Patients With Multiple Patients or Cohorts: Scoping Review
,”
J. Med. Internet Res.
,
24
(
10
), p.
e38041
.
126.
Austin
,
R. R.
,
Mathiason
,
M. A.
, and
Monsen
,
K. A.
,
2022
, “
Using Data Visualization to Detect Patterns in Whole-Person Health Data
,”
Res. Nurs. Health
,
45
(
4
), pp.
466
476
.
127.
Lyu
,
Z.
,
Yang
,
J.
,
Lam
,
M. S.
, and
Landay
,
J. A.
,
2022
, “
HomeView: Automatically Building Smart Home Digital Twins With Augmented Reality Headsets
,”
The Adjunct Publication of the 35th Annual ACM Symposium on User Interface Software and Technology
,
Bend, OR
,
Oct. 29–Nov. 2
, pp.
1
6
.
128.
Dietrich
,
T.
,
Guldager
,
J. D.
,
Lyk
,
P.
,
Vallentin-Holbech
,
L.
,
Rundle-Thiele
,
S.
,
Majgaard
,
G.
, and
Stock
,
C.
,
2021
, “
Co-Creating Virtual Reality Interventions for Alcohol Prevention: Living Lab vs. Co-design
,”
Front. Public Health
,
9
, p.
634102
.
129.
Havard
,
V.
,
Jeanne
,
B.
,
Lacomblez
,
M.
, and
Baudry
,
D.
,
2019
, “
Digital Twin and Virtual Reality: A Co-Simulation Environment for Design and Assessment of Industrial Workstations
,”
Prod. Manuf. Res.
,
7
(
1
), pp.
472
489
.
130.
Aivaliotis
,
S.
,
Lotsaris
,
K.
,
Gkournelos
,
C.
,
Fourtakas
,
N.
,
Koukas
,
S.
,
Kousi
,
N.
, and
Makris
,
S.
,
2022
, “
An Augmented Reality Software Suite Enabling Seamless Human Robot Interaction
,”
Int. J. Comput. Integr. Manuf.
,
36
(
9
), pp.
1
27
.
131.
Geng
,
R.
,
Li
,
M.
,
Hu
,
Z.
,
Han
,
Z.
, and
Zheng
,
R.
,
2022
, “
Digital Twin in Smart Manufacturing: Remote Control and Virtual Machining Using VR and AR Technologies
,”
Struct. Multidiscipl. Optim.
,
65
(
11
), p.
321
.
132.
Zhu
,
Z.
,
Liu
,
C.
, and
Xu
,
X.
,
2019
, “
Visualisation of the Digital Twin Data in Manufacturing by Using Augmented Reality
,”
Procedia CIRP
,
81
, pp.
898
903
.
133.
Chang
,
E.
,
Kim
,
H. T.
, and
Yoo
,
B.
,
2020
, “
Virtual Reality Sickness: A Review of Causes and Measurements
,”
Int. J. Hum.-Comput. Interact.
,
36
(
17
), pp.
1658
1682
.
134.
Saredakis
,
D.
,
Szpak
,
A.
,
Birckhead
,
B.
,
Keage
,
H. A. D.
,
Rizzo
,
A.
, and
Loetscher
,
T.
,
2020
, “
Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis
,”
Front. Hum. Neurosci.
,
14
, pp.
1
17
.
135.
Kim
,
S.-H.
,
2022
, “
A Systematic Review on Visualizations for Self-generated Health Data for Daily Activities
,”
Int. J. Environ. Res. Public Health
,
19
(
18
), p.
11166
.
136.
Lenarduzzi
,
V.
, and
Taibi
,
D.
,
2016
, “
MVP Explained: A Systematic Mapping Study on the Definitions of Minimal Viable Product
,”
2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2016
,
Limassol, Cyprus
,
Aug. 21–Sept. 2
, pp.
112
119
.
137.
Cardin
,
O.
, and
Trentesaux
,
D.
,
2022
, “
Design and Use of Human Operator Digital Twins in Industrial Cyber-Physical Systems: Ethical Implications
,”
IFAC-PapersOnLine
,
55
(
2
), pp.
360
365
.
138.
Knight
,
J. F.
, and
Baber
,
C.
,
2005
, “
A Tool to Assess the Comfort of Wearable Computers
,”
Hum. Factors
,
47
(
1
), pp.
77
91
.
139.
Huang
,
W.
,
Li
,
J.
, and
Alem
,
L.
,
2018
, “Towards Preventative Healthcare: A Review of Wearable and Mobile Applications,”
Studies in health technology and informatics: Data, Informatics and Technology: An Inspiration for Improved Healthcare
, Vol.
251
,
A.
Hasman
,
P.
Gallos
,
J.
Liaskos
,
M.
Househ
, and
J.
Mantas
, eds.,
IOS press
,
Amsterdam, The Netherlands
, pp.
11
14
.
140.
Lu
,
L.
,
Zhang
,
J.
,
Xie
,
Y.
,
Gao
,
F.
,
Xu
,
S.
,
Wu
,
X.
, and
Ye
,
Z.
,
2020
, “
Wearable Health Devices in Health Care: Narrative Systematic Review
,”
JMIR mHealth uHealth
,
8
(
11
), p.
e18907
.
141.
Wu
,
M.
, and
Luo
,
J.
,
2019
, “
Wearable Technology Applications in Healthcare: A Literature Review
,”
Online Journal of Nursing Informatics Contributors
,
23
(
2
).
142.
Lee
,
L.-H.
,
Braud
,
T.
,
Hosio
,
S.
, and
Hui
,
P.
,
2022
, “
Towards Augmented Reality Driven Human-City Interaction: Current Research on Mobile Headsets and Future Challenges
,”
ACM Comput. Surv.
,
54
(
8
), pp.
1
38
.
143.
Psyllidis
,
A.
,
Duarte
,
F.
,
Teeuwen
,
R.
,
Salazar Miranda
,
A.
,
Benson
,
T.
, and
Bozzon
,
A.
,
2021
, “
Cities and Infectious Diseases: Assessing the Exposure of Pedestrians to Virus Transmission Along City Streets
,”
Urban Stud.
,
60
(
9
), pp.
1610
1628
.
144.
Villanueva
,
F. J.
,
Bolanos
,
C.
,
Rubio
,
A.
,
Cantarero
,
R.
,
Fernandez-Bermejo
,
J.
, and
Dorado
,
J.
,
2022
, “
Crowded Event Management in Smart Cities Using a Digital Twin Approach
,”
ISC2 2022—8th IEEE International Smart Cities Conferences
,
Pafos, Cyprus
,
Sept. 26–29
, pp.
1
7
.
145.
European Commission, Directorate-General for Research and Innovation
,
Breque
,
M.
,
De Nul
,
L.
, and
Petrides
,
A.
,
2021
, “
Industry 5.0—Towards a Sustainable, Human-Centric and Resilient European Industry
,”
Publications Office
.
146.
Maddikunta
,
P. K. R.
,
Pham
,
Q. V.
,
Prabadevi
,
B.
,
Deepa
,
N.
,
Dev
,
K.
,
Gadekallu
,
T. R.
,
Ruby
,
R.
, and
Liyanage
,
M.
,
2022
, “
Industry 5.0: A Survey on Enabling Technologies and Potential Applications
,”
J. Ind. Inf. Integr.
,
26
, p.
100257
.
147.
Adel
,
A.
,
2022
, “
Future of Industry 5.0 in Society: Human-Centric Solutions, Challenges and Prospective Research Areas
,”
J. Cloud Comput.
,
11
(
1
), pp.
1
15
.
148.
Norman
,
D. A.
,
2013
,
The Design of Everyday Things
,
Basic Books
,
New York
.
149.
Lee
,
B. D.
, and
Paredis
,
C. J. J.
,
2014
, “
A Conceptual Framework for Value-Driven Design and Systems Engineering
,”
Procedia CIRP
,
21
, pp.
10
17
.
150.
Leng
,
J.
,
Sha
,
W.
,
Wang
,
B.
,
Zheng
,
P.
,
Zhuang
,
C.
,
Liu
,
Q.
,
Wuest
,
T.
,
Mourtzis
,
D.
, and
Wang
,
L.
,
2022
, “
Industry 5.0: Prospect and Retrospect
,”
J. Manuf. Syst.
,
65
, pp.
279
295
.
151.
Mourtzis
,
D.
,
Angelopoulos
,
J.
, and
Panopoulos
,
N.
,
2022
, “
Operator 5.0: A Survey on Enabling Technologies and a Framework for Digital Manufacturing Based on Extended Reality
,”
J. Mach. Eng.
,
22
(
1
), pp.
43
69
.
152.
Wolf
,
M.
,
Rantschl
,
M.
,
Auberger
,
E.
,
Preising
,
H.
,
Sbaragli
,
A.
,
Pilati
,
F.
, and
Ramsauer
,
C.
,
2022
, “
Real Time Locating Systems for Human Centered Production Planning and Monitoring
,”
IFAC-PapersOnLine
,
55
(
2
), pp.
366
371
.
153.
Wang
,
T.
,
Li
,
J.
,
Deng
,
Y.
,
Wang
,
C.
,
Snoussi
,
H.
, and
Tao
,
F.
,
2021
, “
Digital Twin for Human-Machine Interaction With Convolutional Neural Network
,”
Int. J. Comput. Integr. Manuf.
,
34
(
7–8
), pp.
888
897
.
154.
Gallala
,
A.
,
Kumar
,
A. A.
,
Hichri
,
B.
, and
Plapper
,
P.
,
2022
, “
Digital Twin for Human–Robot Interactions by Means of Industry 4.0 Enabling Technologies
,”
Sensors
,
22
(
13
), p.
4950
.
155.
Dimitropoulos
,
N.
,
Togias
,
T.
,
Zacharaki
,
N.
,
Michalos
,
G.
, and
Makris
,
S.
,
2021
, “
Seamless Human–Robot Collaborative Assembly Using Artificial Intelligence and Wearable Devices
,”
Appl. Sci.
,
11
(
12
), p.
5699
.
156.
Wang
,
X.
,
Liang
,
C.-J.
,
Menassa
,
C. C.
, and
Kamat
,
V. R.
,
2021
, “
Interactive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work
,”
J. Comput. Civ. Eng.
,
35
(
6
), p.
04021023
.
157.
Gualtieri
,
L.
,
Rauch
,
E.
, and
Vidoni
,
R.
,
2022
, “
Development and Validation of Guidelines for Safety in Human–Robot Collaborative Assembly Systems
,”
Comput. Ind. Eng.
,
163
, p.
107801
.
158.
Fister
,
I.
,
Salcedo-Sanz
,
S.
,
Iglesias
,
A.
,
Fister
,
D.
,
Gálvez
,
A.
, and
Fister
,
I.
,
2021
, “
New Perspectives in the Development of the Artificial Sport Trainer
,”
Appl. Sci.
,
11
(
23
), p.
11452
.
159.
Weiner
,
E.
,
2020
, “
Why Travel Should Be Considered an Essential Human Activity
,”
National Geographic
, [Online], https://www.nationalgeographic.com/travel/article/why-travel-should-be-considered-an-essential-human-activity.
160.
Wang
,
Z.
,
Gupta
,
R.
,
Han
,
K.
,
Wang
,
H.
,
Ganlath
,
A.
,
Ammar
,
N.
, and
Tiwari
,
P.
,
2022
, “
Mobility Digital Twin: Concept, Architecture, Case Study, and Future Challenges
,”
IEEE Internet Things J.
,
9
(
18
), pp.
17452
17467
.
161.
Anda
,
C.
,
Ordonez Medina
,
S. A.
, and
Axhausen
,
K. W.
,
2021
, “
Synthesising Digital Twin Travellers: Individual Travel Demand From Aggregated Mobile Phone Data
,”
Transp. Res. Part C Emerg. Technol.
,
128
, p.
103118
.
162.
Abraham
,
J.
,
Cruz
,
G.
,
Cubela
,
S.
,
Lajous
,
T.
,
Rowshankish
,
K.
,
Tiwari
,
S.
, and
Zemmel,
,
R.
,
2022
, Digital Twins: The Foundation of the Enterprise Metaverse, [Online], https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/digital-twins-the-foundation-of-the-enterprise-metaverse.
163.
Oh
,
C. S.
,
Bailenson
,
J. N.
, and
Welch
,
G. F.
,
2018
, “
A Systematic Review of Social Presence: Definition, Antecedents, and Implications
,”
Front. Rob. AI
,
5
, pp.
1
35
. doi.org/10.3389/frobt.2018.00114
164.
Dwivedi
,
Y. K.
,
Hughes
,
L.
,
Baabdullah
,
A. M.
,
Ribeiro-Navarrete
,
S.
,
Giannakis
,
M.
,
Al-Debei
,
M. M.
,
Dennehy
,
D.
, et al
,
2022
, “
Metaverse Beyond the Hype: Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy
,”
Int. J. Inf. Manage.
,
66
, p.
102542
.
165.
Norman
,
D. A.
,
2005
, “
Human-Centered Design Considered Harmful
,”
Interactions
,
12
(
4
), pp.
14
19
.
166.
Wuest
,
T.
, and
Wellsandt
,
S.
,
2016
, “
Design and Development of Product Service Systems (PSS)—Impact on Product Lifecycle Perspective
,”
Procedia Technol.
,
26
, pp.
152
161
.
167.
Rout
,
N.
,
Khandual
,
A.
,
Zhang
,
Y. F.
, and
Luximon
,
A.
,
2010
, “
3D Foot Scan to Custom Shoe Last
,”
Int. J. Comput. Commun. Technol.
,
1
(
2
), pp.
110
114
.
168.
Chandra
,
S.
,
Verma
,
S.
,
Lim
,
W. M.
,
Kumar
,
S.
, and
Donthu
,
N.
,
2022
, “
Personalization in Personalized Marketing: Trends and Ways Forward
,”
Psychol. Mark.
,
39
(
8
), pp.
1529
1562
.
169.
Boerman
,
S. C.
,
Kruikemeier
,
S.
, and
Bol
,
N.
,
2021
, “
When is Personalized Advertising Crossing Personal Boundaries? How Type of Information, Data Sharing, and Personalized Pricing Influence Consumer Perceptions of Personalized Advertising
,”
Comput. Hum. Behav. Reports
,
4
, p.
100144
.
170.
Merritt
,
K.
, and
Zhao
,
S.
,
2021
, “
An Innovative Reflection Based on Critically Applying UX Design Principles
,”
J. Open Innov. Technol. Mark. Complex.
,
7
(
2
), p.
129
.
171.
Monsone
,
C.
,
Mercier-Laurent
,
E.
, and
János
,
J.
,
2019
, “
The Overview of Digital Twins in Industry 4.0: Managing the Whole Ecosystem
,”
Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
,
Vienna, Austria
,
Sept. 17–19
, pp.
271
276
.
172.
Huynh-The
,
T.
,
Pham
,
Q.-V.
,
Pham
,
X.-Q.
,
Nguyen
,
T. T.
,
Han
,
Z.
, and
Kim
,
D.-S.
,
2023
, “
Artificial Intelligence for the Metaverse: A Survey
,”
Eng. Appl. Artif. Intell.
,
117
(
Part A
), p.
105581
.
173.
Minnoye
,
A. S. L. M.
,
Tajdari
,
F.
,
Doubrovski
,
E. Z. L.
,
Wu
,
J.
,
Kwa
,
F.
,
Elkhuizen
,
W. S.
,
Huysmans
,
T.
, and
Song
,
Y.
,
2022
, “
Personalized Product Design Through Digital Fabrication
,”
Volume 2: 42nd Computers and Information in Engineering Conference (CIE)
,
St. Louis, MO
,
Aug. 14–17
.
174.
Sarker
,
I. H.
,
2021
, “
Machine Learning: Algorithms, Real-World Applications and Research Directions
,”
SN Comput. Sci.
,
2
(
3
), pp.
1
21
.
You do not currently have access to this content.