Abstract

This work optimizes a dynamic vibration absorber (DVA) model equipped with an additional amplifying mechanism using the H optimization criterion, which aims to minimize the maximum frequency response amplitude of the primary structure. This optimization problem is widely investigated using the fixed-point method, which, however, works only when the primary structure is undamped and gives approximate solutions at best. Instead, we seek the exact solutions, and a resultant-based optimization scheme is accordingly proposed, which allows handling purely univariate polynomial equations in the solving procedure to guarantee the convergence and global optimum conditions. Consequently, exactly numerical and closed-form optimal DVA parameters are obtained when the primary structure is damped and undamped, respectively. Furthermore, we are also interested in the effect of the amplifying mechanism on vibration suppression, showing that it functions as a convenient equivalent mass ratio regulator to benefit the DVA performance. Finally, the presented sensitivity analysis reveals the effect of the small variations of the DVA stiffness and damping on the vibration suppression performance and the role of the amplifying mechanism in balancing such two components’ uncertainties. This work generalizes the existing exact H optimization methods and provides a guideline for the enhanced DVA design using the amplifying mechanism.

References

1.
Frahm
,
H.
,
1911
,
Device for Damping Vibrations of Bodies
, US Patent 989, 958, pp.
3576
3580
.
2.
Cai
,
J.
,
Liu
,
Y.
,
Gao
,
Q.
, and
Chen
,
Y.
,
2023
, “
Spectrum-Based Stability Analysis for Fractional-Order Delayed Resonator With Order Scheduling
,”
J. Sound Vib.
,
546
, p.
117440
.
3.
Den Hartog
,
J.
, and
Ormondroyd
,
J.
,
1928
, “
Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech
,
50
(
7
), pp.
11
22
.
4.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Courier Corporation
,
New York
.
5.
Ren
,
M.
,
2001
, “
A Variant Design of the Dynamic Vibration Absorber
,”
J. Sound Vib.
,
245
(
4
), pp.
762
770
.
6.
Liu
,
K.
, and
Liu
,
J.
,
2005
, “
The Damped Dynamic Vibration Absorbers: Revisited and New Result
,”
J. Sound Vib.
,
284
(
3–5
), pp.
1181
1189
.
7.
Wong
,
W. O.
, and
Cheung
,
Y.
,
2008
, “
Optimal Design of a Damped Dynamic Vibration Absorber for Vibration Control of Structure Excited by Ground Motion
,”
Eng. Struct.
,
30
(
1
), pp.
282
286
.
8.
Cheung
,
Y.
, and
Wong
,
W. O.
,
2009
, “
H∞ and H2 Optimizations of a Dynamic Vibration Absorber for Suppressing Vibrations in Plates
,”
J. Sound Vib.
,
320
(
1–2
), pp.
29
42
.
9.
Cheung
,
Y.
,
Wong
,
W. O.
, and
Cheng
,
L.
,
2012
, “
Design Optimization of a Damped Hybrid Vibration Absorber
,”
J. Sound Vib.
,
331
(
4
), pp.
750
766
.
10.
Shen
,
Y.
,
Peng
,
H.
,
Li
,
X.
, and
Yang
,
S.
,
2017
, “
Analytically Optimal Parameters of Dynamic Vibration Absorber With Negative Stiffness
,”
Mech. Syst. Signal Process
,
85
, pp.
193
203
.
11.
Wang
,
X.
,
Liu
,
X.
,
Shan
,
Y.
,
Shen
,
Y.
, and
He
,
T.
,
2018
, “
Analysis and Optimization of the Novel Inerter-Based Dynamic Vibration Absorbers
,”
IEEE Access
,
6
, pp.
33169
33182
.
12.
Sun
,
R.
,
Wong
,
W.
, and
Cheng
,
L.
,
2023
, “
Bi-Objective Optimal Design of an Electromagnetic Shunt Damper for Energy Harvesting and Vibration Control
,”
Mech. Syst. Signal Process
,
182
, p.
109571
.
13.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to H∞ and H 2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.
14.
Nishihara
,
O.
, and
Asami
,
T.
,
2002
, “
Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors)
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
576
582
.
15.
Asami
,
T.
, and
Nishihara
,
O.
,
2003
, “
Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)
,”
J. Vib. Acoust
,
125
(
3
), pp.
398
405
.
16.
Asami
,
T.
,
2017
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Arranged in Series or in Parallel
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011015
.
17.
Asami
,
T.
,
2019
, “
Exact Algebraic Solution of an Optimal Double-Mass Dynamic Vibration Absorber Attached to a Damped Primary System
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051013
.
18.
Asami
,
T.
,
2022
, “
Relationship Between the Reciprocity of Transfer Functions for Mechanical Vibration Systems and Optimal Design Formulas of Dynamic Vibration Absorbers
,”
Mech. Eng. J.
,
9
(
1
), pp.
21
00362
.
19.
Asami
,
T.
,
Mizukawa
,
Y.
, and
Ise
,
T.
,
2018
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Minimizing the Mobility Transfer Function
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061012
.
20.
Yamada
,
K.
, and
Asami
,
T.
,
2022
, “
Passive Vibration Suppression Using 2-Degree-of-Freedom Vibration Absorber Consisting of a Beam and Piezoelectric Elements
,”
J. Sound Vib.
,
532
, p.
116997
.
21.
Yan
,
B.
,
Yu
,
N.
, and
Wu
,
C.
,
2022
, “
A State-of-the-art Review on Low-Frequency Nonlinear Vibration Isolation With Electromagnetic Mechanisms
,”
Appl. Math. Mech.
,
43
(
7
), pp.
1045
1062
.
22.
Li
,
K.
, and
Gohnert
,
M.
,
2010
, “
Lever Mechanism for Vibration Isolation
,”
Appl. Technol. Innov.
,
1
(
1
), pp.
21
28
.
23.
Liu
,
Y.
,
Cai
,
J.
,
Olgac
,
N.
, and
Gao
,
Q.
,
2022
, “
A Robust Delayed Resonator Construction Using Amplifying Mechanism
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011010
.
24.
Yan
,
B.
,
Wang
,
Z.
,
Ma
,
H.
,
Bao
,
H.
,
Wang
,
K.
, and
Wu
,
C.
,
2021
, “
A Novel Lever-Type Vibration Isolator With Eddy Current Damping
,”
J. Sound Vib.
,
494
, p.
115862
.
25.
Wang
,
X.
,
Yu
,
N.
,
Wu
,
C.
,
Zhang
,
W.
, and
Yan
,
B.
,
2022
, “
Lever-Type High-Static-Low-Dynamic-Stiffness Vibration Isolator With Electromagnetic Shunt Damping
,”
Int, J. Non Lin. Mech.
,
146
, p.
104128
.
26.
Yan
,
B.
,
Wang
,
X.
,
Wang
,
Z.
,
Wu
,
C.
, and
Zhang
,
W.
,
2022
, “
Enhanced Lever-Type Vibration Isolator via Electromagnetic Shunt Damping
,”
Int. J. Mech. Sci.
,
218
, p.
107070
.
27.
Shen
,
Y.
,
Xing
,
Z.
,
Yang
,
S.
, and
Sun
,
J.
,
2019
, “
Parameters Optimization for a Novel Dynamic Vibration Absorber
,”
Mech. Syst. Signal Process
,
133
, p.
106282
.
28.
Baduidana
,
M.
, and
Kenfack-Jiotsa
,
A.
,
2022
, “
Parameters Optimization and Performance Evaluation for the Novel Tuned Inertial Damper
,”
Eng. Struct.
,
250
, p.
113396
.
29.
Cheng
,
Z.
,
Palermo
,
A.
,
Shi
,
Z.
, and
Marzani
,
A.
,
2020
, “
Enhanced Tuned Mass Damper Using an Inertial Amplification Mechanism
,”
J. Sound Vib.
,
475
, p.
115267
.
30.
Sui
,
P.
,
Shen
,
Y.
,
Yang
,
S.
, and
Wang
,
J.
,
2021
, “
Parameters Optimization of Dynamic Vibration Absorber Based on Grounded Stiffness, Inerter, and Amplifying Mechanism
,”
J. Vib. Control
, p.
10775463211038272
.
31.
Liu
,
Y.
,
Cai
,
J.
,
Hou
,
L.
,
Yan
,
B.
,
Chen
,
L.
, and
Gao
,
Q.
,
2023
, “
Bistable Dynamics Analysis Using Padé Approximation and Resultant Theory
,”
Int, J. Non Lin, Mech.
,
149
, p.
104325
.
32.
Sylvester
,
J. J.
,
1840
, “
XXIII. A Method of Determining by Mere Inspection the Derivatives From Two Equations of Any Degree
,”
Lond. Edin. Dublin Philos. Mag. J. Sci.
,
16
(
101
), pp.
132
135
.
33.
Morozov
,
A. Y.
, and
Shakirov
,
S. R.
,
2010
, “
New and Old Results in Resultant Theory
,”
Theoretical and Mathematical Physics
,
163
(
2
), pp.
587
617
.
34.
Collins
,
G. E.
,
1971
, “
The Calculation of Multivariate Polynomial Resultants
,”
J. ACM
,
18
(
4
), pp.
515
532
.
35.
Nishihara
,
O.
,
2019
, “
Exact Optimization of a Three-Element Dynamic Vibration Absorber: Minimization of the Maximum Amplitude Magnification Factor
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011001
.
36.
Edelman
,
A.
, and
Murakami
,
H.
,
1995
, “
Polynomial Roots From Companion Matrix Eigenvalues
,”
Math. Comput.
,
64
, pp.
763
776
.
37.
Asami
,
T.
,
2020
, “
Calculation of the H∞ Optimized Design of a Single-Mass Dynamic Vibration Absorber Attached to a Damped Primary System
,”
Mech. Eng. J.
,
7
(
5
), pp.
20
00250
.
38.
Xing
,
Z.
,
Shen
,
Y.
,
Xing
,
H.
, and
Wang
,
J.
,
2020
, “
Parameters Optimization for a Type of Dynamic Vibration Absorber With Lever Component
,”
J. Vib. Eng.
,
33
, pp.
347
355
.
You do not currently have access to this content.