Abstract

Accurate prediction of remaining useful life (RUL) plays an important role in reducing the probability of accidents and lessening the economic loss. However, traditional model-based methods for RUL are not suitable when operating conditions and fault models are complicated. To deal with this problem, this paper proposes a novel data-driven method based on a deep dilated convolution neural networks (D-CNN). The novelties of the proposed method are triple folds. First, no feature engineering is required, and the raw sensor data are directly used as the input of the model. Second the dilated convolutional structure is used to enlarge the receptive field and further improve the accuracy of prediction. Finally, time sequences are encoded by a 2D-convolution to extract higher-level features. Extensive experiments on the C-MAPSS dataset demonstrate that the proposed D-CNN achieves high performance while requiring less training time.

References

1.
Li
,
Y.
,
Billington
,
S.
,
Kurfess
,
C. Z.
, and
Danyluk
,
S.
,
1999
, “
Dynamic Prognostic Prediction of Defect Propagation on Rolling Element Bearings
,”
Tribol. Trans.
,
42
(
2
), pp.
385
392
. 10.1080/10402009908982232
2.
Oppenheimer
,
Charles H.
, and
L.
,
K. A.
,
2002
, “
Physically Based Diagnosis and Prognosis of Cracked Rotor Shafts
,”
Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Component and Systems Diagnostics, Prognostics, and Health Management II
,
Orlando, FL
,
Apr. 3–4
, Vol.
4733
.
3.
Khera
,
N.
, and
Khan
,
S. A.
,
2018
, “
Prognostics of Aluminum Electrolytic Capacitors Using Artificial Neural Network Approach
,”
Microelectron. Reliab.
,
81
, pp.
328
336
. 10.1016/j.microrel.2017.11.002
4.
Miao
,
Q.
,
Zhang
,
X.
,
Liu
,
Z.
, and
Zhang
,
H.
,
2017
, “
Condition Multi-Classification and Evaluation of System Degradation Process Using an Improved Support Vector Machine
,”
Microelectron. Reliab.
,
75
, pp.
223
232
. 10.1016/j.microrel.2017.03.020
5.
Yu
,
J.
,
2017
, “
Aircraft Engine Health Prognostics Based on Logistic Regression with Penalization Regularization and State-Space-Based Degradation Framework
,”
Aerosp. Sci. Technol.
,
68
, pp.
345
361
. 10.1016/j.ast.2017.05.030
6.
Maurya
,
S.
,
Singh
,
V.
,
Dixit
,
S.
,
Verma
,
N. K.
,
Salour
,
A.
, and
Liu
,
J.
,
2018
, “
Fusion of Low-Level Features With Stacked Autoencoder for Condition Based Monitoring of Machines
,”
IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Seattle, WA
,
June 11–13
, pp.
1
8
.
7.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A. K.
, and
Tan
,
K. C.
,
2017
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Netw. Learning Syst.
,
28
(
10
), pp.
2306
2318
. 10.1109/TNNLS.2016.2582798
8.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Safety
,
172
, pp.
1
11
. 10.1016/j.ress.2017.11.021
9.
Niu
,
Guangxing
,
Tang
,
Shijie
, and
Zhang
,
Bin
,
2018
, “
Machine Condition Prediction Based on Long Short Term Memory and Particle Filtering
,”
Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
,
Oct. 21–23
, pp.
5942
5947
.
10.
Chen
,
Z.
,
Li
,
C.
, and
Sanchez
,
R.-V.
,
2015
, “
Multi-Layer Neural Network with Deep Belief Network for Gearbox Fault Diagnosis
,”
J. Vibroengineering
,
17
(
5
), pp.
2379
2392
.
11.
Wang
,
P.
, and
Xia
,
C.
,
2015
, “
Fault Detection and Self-Learning Identification Based on PCA-PDBNs
,”
Chin. J. Sci. Instrum.
,
36
(
5
), pp.
1147
1154
.
12.
Wu
,
Q.
,
Ding
,
K.
, and
Huang
,
B.
,
2018
, “
Approach for Fault Prognosis Using Recurrent Neural Network
,”
J. Intelligent Manuf.
, Jun. 10.1007/s10845-018-1428-5
13.
Yu
,
F.
, and
Koltun
,
V.
,
2015
, “
Multi-Scale Context Aggregation by Dilated Convolutions
,”
e-print arXiv:1511.07122 [Online]
.
14.
Zhang
,
S.
,
Zhang
,
S.
,
Zhang
,
C.
,
Wang
,
X.
, and
Shi
,
Y.
,
2019
, “
Cucumber Leaf Disease Identification With Global Pooling Dilated Convolutional Neural Network
,”
Comput. Electron. Agriculture
,
162
, pp.
422
430
. 10.1016/j.compag.2019.03.012
15.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life estimation
,”
IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Dallas, TX
,
June 19–21
, pp.
88
95
.
16.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Long Short-Term Memory for Machine Remaining Life Prediction
,”
J. Manuf. Syst.
,
48
(
C
), pp.
78
86
. 10.1016/j.jmsy.2018.05.011
17.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
, pp.
167
179
. 10.1016/j.neucom.2017.05.063
18.
Wen
,
H.
,
Shi
,
J.
,
Zhang
,
Y.
,
Lu
,
K.-H.
,
Cao
,
J.
, and
Liu
,
Z.
,
2018
, “
Neural Encoding and Decoding With Deep Learning for Dynamic Natural Vision
,”
Cerebral Cortex
,
28
(
12
), pp.
4136
4160
. 10.1093/cercor/bhx268
19.
Cheng
,
G.
,
Han
,
J.
,
Zhou
,
P.
, and
Xu
,
D.
,
2019
, “
Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection
,”
IEEE Trans. Image Process.
,
28
(
1
), pp.
265
278
. 10.1109/TIP.2018.2867198
20.
Zhang
,
Q.
,
Yuan
,
Q.
,
Zeng
,
C.
,
Li
,
X.
, and
Wei
,
Y.
,
2018
, “
Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network
,”
IEEE Trans. Geosci. Remote Sens.
,
56
(
8
), pp.
4274
4288
. 10.1109/TGRS.2018.2810208
21.
Zhao
,
R.
,
Yan
,
R.
,
Wang
,
J.
, and
Mao
,
K.
,
2017
, “
Learning to Monitor Machine Health With Convolutional Bi-Directional LSTM Networks
,”
Sensors
,
17
(
2
), pp.
273
290
.
22.
Yoo
,
Y.
, and
Baek
,
J.-G.
,
2018
, “
A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network
,”
Appl. Sci.
,
8
(
7
), pp.
1102
1118
.
23.
Chen
,
Y.
,
Guo
,
Q.
,
Liang
,
X.
,
Wang
,
J.
, and
Qian
,
Y.
,
2019
, “
Environmental Sound Classification With Dilated Convolutions
,”
Appl. Acoust.
,
148
, pp.
123
132
. 10.1016/j.apacoust.2018.12.019
24.
Chen
,
L.
,
Papandreou
,
G.
,
Kokkinos
,
I.
,
Murphy
,
K.
, and
Yuille
,
A. L.
,
2018
, “
DeepLab: Semantic Image Segmentation With Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
40
(
4
), pp.
834
848
. 10.1109/TPAMI.2017.2699184
25.
Rumelhart
,
D.
,
Hinton
,
G.
, and
Williams
,
R.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
. 10.1038/323533a0
26.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, pp.
1
9
.
27.
Liu
,
Y.
,
Frederick
,
D. K.
,
DeCastro
,
J. A.
,
Litt
,
J. S.
, and
Chan
,
W. W.
,
2012
,
User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): Version 2
.
Technical Report 20120003211
,
NASA Glenn Research Center
,
Cleveland, OH
,
March
.
28.
Ramasso
,
E.
, and
Saxena
,
A.
,
2014
, “
Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets
,”
Int. J. Prognostics Health Manage.
,
5
(
11
), pp.
1
15
.
29.
Ellefsen
,
A. L.
,
Bjørlykhaug
,
E.
,
Æsøy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Safety
,
183
, pp.
240
251
. 10.1016/j.ress.2018.11.027
30.
Sateesh Babu
,
G.
,
Zhao
,
P.
, and
Li
,
X.-L.
,
2016
, “
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
,”
International Conference on Database Systems for Advanced Applications
,
Dallas, TX
,
Apr. 16–19
,
S. B.
Navathe
,
W.
Wu
,
S.
Shekhar
,
X.
Du
,
X. S.
Wang
, and
H.
Xiong
, eds.,
Springer International Publishing
, pp.
214
228
.
31.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A. K.
, and
Tan
,
K. C.
,
2017
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Netw. Learning Syst.
,
28
(
10
), pp.
2306
2318
. 10.1109/TNNLS.2016.2582798
You do not currently have access to this content.