We hypothesize that by providing decision support for designers we can speed up the design process and facilitate the creation of quality cost-effective designs. One of the challenges in providing design decision support is that the decision workflows embody various degrees of complexity due to the inherent complexity embodied in engineering systems. To tackle this, we propose a knowledge-based Platform for Decision Support in the Design of Engineering Systems (PDSIDES). PDSIDES is built on our earlier works that are anchored in modeling decision-related knowledge with templates using ontologies to facilitate execution and reuse. In this paper, we extend the ontological decision templates to a computational platform that provides knowledge-based decision support for three types of users, namely, template creators, template editors, and template implementers, in original design, adaptive design, and variant design, respectively. The efficacy of PDSIDES is demonstrated using a hot rod rolling system (HRRS) design example.

References

1.
Soria
,
N.
,
Colby
,
M. K.
,
Tumer
,
I. Y.
,
Hoyle
,
C.
, and
Tumer
,
K.
,
2017
, “
Design of Complex Engineered System Using Multiagent Coordination
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011003
.
2.
Berg
,
L. P.
, and
Vance
,
J. M.
,
2016
, “
An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
1
), p.
011001
.
3.
Afshari
,
H.
,
Peng
,
Q.
, and
Gu
,
P.
,
2016
, “
Design Optimization for Sustainable Products Under Users' Preference Changes
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041001
.
4.
Daskilewicz
,
M. J.
, and
German
,
B. J.
,
2012
, “
Rave: A Computational Framework to Facilitate Research in Design Decision Support
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
2
), p.
021005
.
5.
Kuppuraju
,
N.
,
Ganesan
,
S.
,
Mistree
,
F.
, and
Sobieski
,
J. S.
,
1985
, “
Hierarchical Decision-Making in System-Design
,”
Eng. Optim.
,
8
(
3
), pp.
223
252
.
6.
Shah
,
J. J.
, and
Mantyla
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques and Applications
,
Wiley
, New York.
7.
Coyne
,
R. D. D.
,
Rosenman
,
M. A.
,
Radford
,
A. D.
,
Balachandran
,
M.
, and
Gero
,
J. S.
,
1990
,
Knowledge-Based Design Systems
,
Addison-Wesley Pub. Co
, Boston, MA.
8.
Finger
,
S.
, and
Dixon
,
J. R.
,
1989
, “
A Review of Research in Mechanical Engineering Design—Part II: Representations, Analysis, and Design for the Life Cycle
,”
Res. Eng. Des.
,
1
(
2
), pp.
121
137
.
9.
Verhagen
,
W. J. C.
,
Bermell-Garcia
,
P.
,
Van Dijk
,
R. E. C.
, and
Curran
,
R.
,
2012
, “
A Critical Review of Knowledge-Based Engineering: An Identification of Research Challenges
,”
Adv. Eng. Inform.
,
26
(
1
), pp.
5
15
.
10.
Rocca
,
G. L.
,
2012
, “
Knowledge Based Engineering: Between AI and CAD. Review of a Language Based Technology to Support Engineering Design
,”
Adv. Eng. Inform.
,
26
(
2
), pp.
159
179
.
11.
Jakiela
,
M. J.
, and
Papalambros
,
P. Y.
,
1989
, “
Design and Implementation of a Prototype ‘Intelligent' CAD System
,”
ASME J. Mech. Transm. Autom. Des.
,
111
(
2
), pp.
252
258
.
12.
Sapuan
,
S. M.
,
2001
, “
A Knowledge-Based System for Materials Selection in Mechanical Engineering Design
,”
Mater. Des.
,
22
(
8
), pp.
687
695
.
13.
Rockwell
,
J. A.
,
Grosse
,
I. R.
,
Krishnamurty
,
S.
, and
Wileden
,
J. C.
,
2010
, “
A Semantic Information Model for Capturing and Communicating Design Decisions
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031008
.
14.
Ming
,
Z.
,
Wang
,
G.
,
Yan
,
Y.
,
Panchal
,
J. H.
,
Goh
,
D.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
Ontology-Based Representation of Design Decision Hierarchies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011001
.
15.
Ming
,
Z.
,
Wang
,
G.
,
Yan
,
Y.
,
Dal Santo
,
J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
An Ontology for Reusable and Executable Decision Templates
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031008
.
16.
Ming
,
Z.
,
Yan
,
Y.
,
Wang
,
G.
,
Panchal
,
J. H.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
Ontology-Based Executable Design Decision Template Representation and Reuse
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
30
(
4
), pp.
390
405
.
17.
Mistree
,
F.
,
Smith
,
W. F.
,
Bras
,
B. A.
,
Allen
,
J. K.
, and
Muster
,
D.
,
1990
, “
Decision-Based Design: A Contemporary Paradigm for Ship Design
,”
Trans., Soc. Nav. Archit. Mar. Eng.
,
98
, pp.
565
597
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4236&rep=rep1&type=pdf
18.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
19.
Muster
,
D.
, and
Mistree
,
F.
,
1988
, “
The Decision Support Problem Technique in Engineering Design
,”
Int. J. Appl. Eng. Educ.
,
4
(
1
), pp.
23
33
.https://www.researchgate.net/publication/236843129_The_Decision_Support_Problem_Technique_in_Engineering_Design
20.
Mistree
,
F.
,
Lewis
,
K.
, and
Stonis
,
L.
,
1994
, “
Selection in the Conceptual Design of Aircraft
,” AIAA J.,
5th Symposium on Multidisciplinary Analysis and Optimization, American Institute of Aeronautics and Astronautics
, Panama City Beach, FL, Sept. 7–9. https://arc.aiaa.org/doi/10.2514/6.1994-4382
21.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
,
1993
, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
AIAA
,
Washington, DC
, pp.
247
286
.
22.
Bascaran
,
E.
,
Bannerot
,
R.
, and
Mistree
,
F.
,
1987
, “
The Conceptual Development of a Methodology for Solving Multi-Objective Hierarchical Thermal Design Problems
,”
ASME
Paper No. 87-HT-62. https://www.researchgate.net/profile/Farrokh_Mistree/publication/236686654_The_Conceptual_Development_of_a_Method_for_Solving_Multi-objective_Hierarchical_Thermal_Design_Problems/links/00b7d5303f3b858500000000.pdf
23.
Smith
,
W. F.
,
1985
,
The Development of AUSEVAL: An Automated Ship Evaluation System
, M.S. dissertation, University of Houston, Houston, TX.
24.
Reddy
,
R.
,
Smith
,
W.
,
Mistree
,
F.
,
Bras
,
B.
,
Chen
,
W.
,
Malhotra
,
A.
,
Badhrinath
,
K.
,
Lautenschlager
,
U.
,
Pakala
,
R.
, and
Vadde
,
S.
,
1996
, “
DSIDES User Manual
,” Georgia Institue of Technology, Atlanta, Georgia.
25.
Panchal
,
J. H.
,
Fernández
,
M. G.
,
Paredis
,
C. J. J.
, and
Mistree
,
F.
,
2004
, “
Reusable Design Processes Via Modular, Executable, Decision-Centric Templates
,”
AIAA
Paper No. 2004-4601.
26.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
27.
Zhan
,
P.
,
Jayaram
,
U.
,
Kim
,
O.
, and
Zhu
,
L.
,
2010
, “
Knowledge Representation and Ontology Mapping Methods for Product Data in Engineering Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
2
), p.
021004
.
28.
Li
,
Z.
,
Raskin
,
V.
, and
Ramani
,
K.
,
2008
, “
Developing Engineering Ontology for Information Retrieval
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011003
.
29.
Wang
,
H.
,
Noy
,
N.
,
Rector
,
A.
,
Musen
,
M.
,
Redmond
,
T.
,
Rubin
,
D.
,
Tu
,
S.
,
Tudorache
,
T.
,
Drummond
,
N.
, and
Horridge
,
M.
, “
Frames and OWL Side by Side
,”
Presentation Abstracts
, Stanford University, Stanford, CA, p.
54
.
30.
Mocko
,
G. M.
,
Rosen
,
D. W.
, and
Mistree
,
F.
,
2007
, “
Decision Retrieval and Storage Enabled Through Description Logic
,”
ASME
Paper No. DETC2007-35644.
31.
Baeza-Yates
,
R.
, and
Ribeiro-Neto
,
B.
,
2011
,
Modern Information Retrieval: The Concepts and Technology behind Search
,
Addison Wesley
,
Boston, MA
.
32.
Salton
,
G.
,
Wong
,
A.
, and
Yang
,
C.-S.
,
1975
, “
A Vector Space Model for Automatic Indexing
,”
Commun. ACM
,
18
(
11
), pp.
613
620
.
33.
Friedman-Hill, E., 2015, “JESS - the Rule Engine for the JavaTM Platform,” Manning Publications Co., Shelter Island, NY, accessed June 16, 2018, http://herzberg.ca.sandia.gov/
34.
Sencha, 2018, “Sencha GXT,” accessed June 16, 2018, https://www.sencha.com/products/gxt/#overview
35.
Google, 2018, “Google Web Toolkit,” accessed June 16, 2018, http://www.gwtproject.org/overview.html
36.
Adobe, 2018, “Apache Flex," accessed June 16, 2018, https://www.adobe.com/devnet/flex.html
37.
JSON, 2018, “JavaScript Object Notation,” accessed June 16, 2018, http://www.json.org/
38.
Stanford University, 2018, “Protégé 3.5,” accessed June 16, 2018, https://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
39.
Allen
,
J. K.
,
Mistree
,
F.
,
Panchal
,
J.
,
Gautham
,
B.
,
Singh
,
A.
,
Reddy
,
S.
,
Kulkarni
,
N.
, and
Kumar
,
P.
, 2013, “
Integrated Realization of Engineered Materials and Products: A Foundational Problem
,”
2nd World Congress on Integrated Computational Materials Engineering
(
ICME
), Salt Lake City, UT, July 7–11, pp.
277
284
.
40.
Nellippallil
,
A. B.
,
Vignesh
,
R.
,
Allen
,
J. K.
,
Mistree
,
F.
,
Gautham
,
B. P.
, and
Singh
,
A. K.
,
2017
, “
A Goal-Oriented, Inverse Decision-Based Design Method to Achieve the Vertical and Horizontal Integration of Models in a Hot-Rod Rolling Process Chain
,”
ASME
Paper No. DETC2017-67570.
41.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B.
,
Allen
,
J. K.
, and
Mistree
,
F.
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multi-Stage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
.
42.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B.
,
Allen
,
J. K.
, and
Mistree
,
F.
, “
A Goal Oriented, Sequential Process Design of a Multi-Stage Hot Rod Rolling System
,”
ASME
Paper No. DETC2016-59402.
43.
Nellippallil
,
A. B.
,
Vignesh
,
R.
,
Allen
,
J. K.
,
Mistree
,
F.
,
Gautham
,
B. P.
, and
Singh
,
A. K.
,
2017
, “
A Decision-Based Design Method to Explore the Solution Space for Microstructure After Cooling Stage to Realize the End Mechanical Properties of Hot Rolled Product
,”
Fourth World Congress on Integrated Computational Materials Engineering
(
ICME 2017
), Ypsilanti, MI, May 21–25, pp. 353--363.
You do not currently have access to this content.