Abstract

A fractional scheme is proposed to solve time-fractional partial differential equations. According to the considered fractional Taylor series, the scheme is compact in space and provides fourth-order accuracy in space and second-order accuracy in fractional time. The scheme is conditionally stable when applied to the scalar fractional parabolic equation. The convergence of the scheme is demonstrated for the system of fractional parabolic equations. Moreover, a fractional model for heat and mass transfer of mixed convection flow over the flat and oscillatory plate is given. The radiation effects and chemical reactions are also considered. The scheme is tested on this model and the nonlinear fractional Burgers equation. It is found that it is more accurate than considering existing schemes in most of the regions of the solution domain. The compact scheme with exact findings of spatial derivatives is better than considering linearized equations. The error obtained by the proposed scheme with the determination of exact spatial derivatives is better than that obtained by two explicit existing schemes. The main advantage of the proposed scheme is that it is capable of providing the solution for convection-diffusion equations with compact fourth-order accuracy. Still, the corresponding implicit compact scheme is unable to find the solution to convection-diffusion problems.

References

1.
A.
Gemant
,
1936
, “
A Method of Analyzing Experimental Results Obtained from Elastiviscous Bodies
,”
Physics
,
7
, pp.
311
317
.10.1063/1.1745400
2.
Gemant
,
A.
,
1938
, “
On Fractional Differentials
,”
Phil. Mag. (Ser.)
,
25
(
168
), pp.
540
549
.10.1080/14786443808562036
3.
Scott-Blair
,
G. W.
,
1944
, “
Analytical and Integrative Aspects of the Stress-Strain-Time Problem
,”
J. Sci. Instrum.
,
21
(
5
), pp.
80
84
.10.1088/0950-7671/21/5/302
4.
Scott-Blair
,
G. W.
,
1947
, “
The Role of Psychophysics in Rheology
,”
J. Colloid Sci.
,
2
, pp.
21
32
.10.1016/0095-8522(47)90007-X
5.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent-II
,”
Geophys. J. R. Astr. Soc.
,
13
(
5
), pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
7.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.10.1122/1.549887
8.
Nonnenmacher
,
T. F.
,
1991
, “
Fractional Relaxation Equations for Viscoelasticity and Related Phenomena
,”
Lecture Notes in Physics Rheological Modelling: Thermodynamical and Statistical Approaches
,
Springer-Verlag
, Berlin, pp.
309
320
.
9.
Gloeckle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1991
, “
Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity
,”
Macromolecules
,
24
(
24
), pp.
6426
6434
.10.1021/ma00024a009
10.
Glockle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1994
, “
Fractional Relaxation and the Time-Temperature Superposition Principle
,”
Rheol. Acta
,
33
(
4
), pp.
337
343
.10.1007/BF00366960
11.
Craiem
,
D.
, and
Magin
,
R. L.
,
2010
, “
Fractional Order Models of Viscoelasticity as an Alternative in the Analysis of Red Blood Cell (RBC) Membrane Mechanics
,”
Phys. Biol.
,
7
(
1
), p.
013001
.10.1088/1478-3975/7/1/013001
12.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
J. Appl. Mech
,
51
(
2
), pp.
299
307
.10.1115/1.3167616
13.
F.
Mainardi
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity
,
World Scientific
, London, UK.
14.
Mainardi
,
F.
,
2012
, “
An Historical Perspective of Fractional Calculus in Linear Viscoelasticity
,”
Fract. Calc. Appl. Anal.
,
15
(
4
), pp.
712
717
.10.2478/s13540-012-0048-6
15.
Hu
,
Y.
, and
He
,
J.
,
2016
, “
On Fractal Space-Time and Fractional Calculus
,”
Therm. Sci.
,
20
(
3
), pp.
773
777
.10.2298/TSCI1603773H
16.
Liu
,
F.
,
Wang
,
P.
,
Zhang
,
Y.
,
Liu
,
H.
, and
He
,
J.
,
2016
, “
A Fractional Model for Insulation Clothings With Cocoon-Like Porous Structure
,”
Therm. Sci.
,
20
(
3
), pp.
779
784
.10.2298/TSCI1603779L
17.
Gao
,
F.
, and
Yang
,
X.
,
2016
, “
Fractional Maxwell Fluid With Fractional Derivative Without Singular Kernel
,”
Therm. Sci.
,
20
(
suppl. 3
), pp.
871
S877
.10.2298/TSCI16S3871G
18.
Yang
,
X.
,
Srivastava
,
H. M.
, and
Machado
,
J.
,
2016
, “
A New Fractional Derivative Without Singular Kernel: Application to the Modelling of the Steady Heat Flow
,”
Therm. Sci.
,
20
(
2
), pp.
753
756
.10.2298/TSCI151224222Y
19.
Yang
,
X.
,
Zhang
,
Z.
,
Machado
,
J.
, and
Baleanu
,
D.
,
2016
, “
On Local Factional Operators View of Computational Complexity: Diffusion and Relaxation Defined on Cantor Sets
,”
Therm. Sci.
,
20
(
suppl. 3
), pp.
755
767
.10.2298/TSCI16S3755Y
20.
Yang
,
X.
,
Baleanu
,
D.
, and
Srivastava
,
H. M.
,
2015
,
Local Fractional Integral Transforms and Their Applications
,
Academic Press
,
New York
.
21.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Non-Local and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,”
Therm. Sci.
,
20
(
2
), pp.
763
769
.10.2298/TSCI160111018A
22.
Atangana
,
A.
, and
Koca
,
I.
,
2016
, “
Chaos in a Simple Non-Linear System With Atangana–Baleanu Derivatives With Fractional Order
,”
Chaos Soliton. Fract.
,
89
, pp.
447
454
.10.1016/j.chaos.2016.02.012
23.
Atangana
,
A.
,
2016
, “
On the New Fractional Derivative and Application to Non-Linear Fisher's Reaction-Diffusion Equation
,”
Appl. Math. Comput.
,
273
, pp.
948
956
.10.1016/j.amc.2015.10.021
24.
Tan
,
W.
, and
Xu
,
M.
,
2002
, “
Plane Surface Suddenly Set in Motion in a Viscoelastic Fluid With Fractional Maxwell Model
,”
Acta Mech. Sin.
,
18
(
4
), pp.
342
349
.10.1007/BF02487786
25.
Qi
,
H.
, and
Xu
,
M.
,
2009
, “
Some Unsteady Unidirectional Flows of a Generalized Oldroyd-b Fluid With Fractional Derivative
,”
Appl. Math. Model.
,
33
(
11
), pp.
4184
4191.
10.1016/j.apm.2009.03.002
26.
Khan
,
M.
,
Ali
,
S. H.
,
Fetecau
,
C.
, and
Qi
,
H.
,
2009
, “
Decay of Potential Vortex for a Viscoelastic Fluid With Fractional Maxwell Model
,”
Appl. Math. Model.
,
33
(
5
), pp.
2526
2533
.10.1016/j.apm.2008.07.014
27.
Fetecau
,
C.
,
Fetecau
,
C.
,
Kamran
,
M.
, and
Vieru
,
D.
,
2009
, “
Exact Solutions for the Flow of a Generalized Oldroyd-b Fluid Induced by a Constantly Accelerating Plate Between Two Side Walls Perpendicular to the Plate
,”
J. Non-Newtonian Fluid Mech.
,
156
(
3
), pp.
189
201
.10.1016/j.jnnfm.2008.06.005
28.
Zheng
,
L.
,
Wang
,
L.
, and
Zhang
,
X.
,
2011
, “
Analytic Solutions of Unsteady Boundary Flow and Heat Transfer on a Permeable Stretching Sheet With Non-Uniform Heat Source/Sink
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
2
), pp.
731
740
.10.1016/j.cnsns.2010.05.022
29.
Nazar
,
M.
,
Zulqarnain
,
M.
,
Akram
,
M. S.
, and
Asif
,
M.
,
2012
, “
Flow Through an Oscillating Rectangular Duct for Generalized Maxwell Fluid With Fractional Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
8
), pp.
3219
3234
.10.1016/j.cnsns.2011.10.002
30.
Zheng
,
L.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2012
, “
Slip Effects on MHD Flow of a Generalized Oldroyd-b Fluid With Fractional Derivative
,”
Nonlinear Anal. RWA
,
13
(
2
), pp.
513
523
.10.1016/j.nonrwa.2011.02.016
31.
Zhao
,
J.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Liu
,
F.
,
2016
, “
Unsteady Natural Convection Boundary Layer Heat Transfer of Fractional Maxwell Viscoelastic Fluid Over a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
97
, pp.
760
766
.10.1016/j.ijheatmasstransfer.2016.02.059
32.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2016
,
Fractional Calculus: Models and Numerical Methods
, 2nd ed.,
World Scientific
, Singapore
.
33.
El-Shahed
,
M.
, and
Salem
,
A.
,
2004
, “
On the Generalized Navier–Stokes Equations
,”
Appl. Math. Comput.
,
156
(
1
), pp.
287
293
.10.1016/j.amc.2003.07.022
34.
Chen
,
W.
, and
Holm
,
S.
,
2004
, “
Fractional Laplacian Time-Space Models for Linear and Non-Linear Lossy Media Exhibiting Arbitrary Frequency Power-Law Dependency
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1424
1430
.10.1121/1.1646399
35.
Pandey
,
P.
,
Kumar
,
S.
,
Gómez-Aguilar
,
J. F.
, and
Baleanu
,
D.
,
2020
, “
An Efficient Technique for Solving the Space-Time Fractional Reaction-Diffusion Equation in Porous Media
,”
Chin. J. Phys.
,
68
, pp.
483
492
.10.1016/j.cjph.2020.09.031
36.
Pandey
,
P.
, and
Francisco Gómez-Aguilar
,
J.
,
2021
, “
On Solution of a Class of Non-Linear Variable Order Fractional Reaction–Diffusion Equation With Mittag–Leffler Kernel
,”
Numer. Methods Partial Diff. Eqs.
,
37
(
2
), pp.
998
1011
.10.1002/num.22563
37.
Dwivedi
,
K. D.
,
Rajeev
,
Das
,
S.
, and
Gomez‐Aguilar
,
J. F.
,
2021
, “
Finite Difference/Collocation Method to Solve Multi Term Variable‐Order Fractional Reaction–Advection–Diffusion Equation in Heterogeneous Medium
,”
Numer. Methods Partial Diff. Eqs.
,
37
(
3
), pp.
2031
2045
.10.1002/num.22648
38.
Kashif Ali Abro
,
M.
,
Hussain Laghari
., and
J. F.
,
Gómez-Aguilar
,
2020
, “
Application of Atangana-Baleanu Fractional Derivative to Carbon Nanotubes Based Non-Newtonian Nanofluid: Applications in Nanotechnology
,”
J. Appl. Comput. Mech.
,
6
(
SI
), pp.
1260
1269.
10.22055/JACM.2020.33461.2229
39.
Ahmad
,
M.
,
Imran
,
M. A.
,
Baleanu
,
D.
, and
Alshomrani
,
A. S.
,
2020
, “
Thermal Analysis of Magneto Hydrodynamic Viscous Fluid With Innovative Fractional Derivative
,”
Therm. Sci.
,
24
(
Suppl. 1
), pp.
351
9
.10.2298/TSCI20S1351A
40.
Khan
,
U.
,
Zaib
,
A.
,
Khan
,
I.
,
Nisar
,
K. S.
, and
Baleanu
,
D.
,
2019
, “
Insights Into the Stability of Mixed Convective Darcy–Forchheimer Flows of Cross Liquids From a Vertical Plate With Consideration of the Significant Impact of Velocity and Thermal Slip Conditions
,”
Mathematics
,
8
(
1
), p.
31
.10.3390/math8010031
41.
Nawaz
,
Y.
,
Arif
,
M. S.
,
Shatanawi
,
W.
, and
Nazeer
,
A.
,
2021
, “
An Explicit Fourth-Order Compact Numerical Scheme for Heat Transfer of Boundary Layer Flow
,”
Energies
,
14
(
12
), p.
3396
.10.3390/en14123396
42.
Pasha
,
A. S.
,
Nawaz
,
Y.
, and
Arif
,
S. M.
,
2021
, “
A Third-Order Accurate in Time Method for Boundary Layer Flow Problems
,”
Appl. Numer. Math.
,
161
, pp.
13
26
.10.1016/j.apnum.2020.10.023
43.
Nawaz
,
Y.
, and
Arif
,
M. S.
,
2021
, “
Modified Class of Explicit and Enhanced Stability Region Schemes: Application to Mixed Convection Flow in a Square Cavity With a Convective Wall
,”
Int. J. Numer. Method Fluids
,
93
(
6
), pp.
1759
1787
.10.1002/fld.4951
44.
Pasha
,
A. S.
,
Nawaz
,
Y.
, and
Arif
,
S. M.
,
2019
, “
The Modified Homotopy Perturbation Method With an Auxiliary Term for the Non-Linear Oscillator With Discontinuity
,”
J. Low Freq. Noise, Vib. Active Control
,
38
(
3–4
), pp.
1363
1373
.10.1177/0962144X18820454
45.
Nawaz
,
Y.
,
Arif
,
M. S.
,
Shatanawi
,
W.
, and
Ashraf
,
M. U.
,
2022
, “
A Fourth Order Numerical Scheme for Unsteady Mixed Convection Boundary Layer Flow: A Comparative Computational Study
,”
Energies
,
15
(
3
), p.
910
.10.3390/en15030910
You do not currently have access to this content.