Abstract

Various vibration-attenuating slab tracks have been introduced into urban railways to minimize the negative effects of train-induced ground vibration and noise. However, compared with traditional slab tracks, vibration-attenuating slab tracks usually have a lower overall stiffness, which reduces the vehicle lateral stability. This paper presents an investigation of the nonlinear hunting stability of fast metro rail vehicles traveling on vibration-attenuating slab tracks. A three-dimensional vehicle–track coupled model considering different vibration-attenuating slab tracks is developed to investigate the nonlinear hunting behavior of metro vehicles running on different elastic vibration-attenuating tracks. The nonlinear critical speed and wheelset hunting limit cycle of two types of metro vehicles traveling on four typical types of vibration-attenuating tracks are compared in detail. The influences of vehicle–track system parameters, including rail fastener stiffness and vehicle suspension parameters, on the vehicle lateral nonlinear stability are reported. The results show that the flexibility of vibration-attenuating slab tracks leads to a large wheelset limit cycle and lowers the nonlinear critical speed. Increasing track lateral stiffness and designing appropriate vehicle suspension parameters can improve the lateral stability of rail vehicles traveling on vibration-attenuating slab tracks.

References

1.
True
,
H.
,
1999
, “
On the Theory of Nonlinear Dynamics and Its Applications in Vehicle Systems Dynamics
,”
Veh. Syst. Dyn.
,
31
(
5–6
), pp.
393
421
.10.1076/vesd.31.5.393.8361
2.
Stichel
,
S.
,
2002
, “
Limit Cycle Behaviour and Chaotic Motions of Two-Axle Freight Wagons With Friction Damping
,”
Multibody Syst. Dyn.
,
8
(
3
), pp.
243
255
.10.1023/A:1020990128895
3.
Shabana
,
A. A.
,
Tobaa
,
M.
,
Sugiyama
,
H.
, and
Zaazaa
,
K.
,
2005
, “
On the Computer Formulations of the Wheel/Rail Contact Problem
,”
Nonlinear Dyn.
,
40
(
2
), pp.
169
193
.10.1007/s11071-005-5200-y
4.
Polach
,
O.
,
2006
, “
On Non-Linear Methods of Bogie Stability Assessment Using Computer Simulations
,”
Proc. Inst. Mech. Eng., Part F
,
220
(
1
), pp.
13
27
.10.1243/095440905X33251
5.
Xu
,
L.
, and
Zhai
,
W.
,
2020
, “
Train–Track Coupled Dynamics Analysis: System Spatial Variation on Geometry, Physics and Mechanics
,”
Railw. Eng. Sci.
,
28
(
1
), pp.
36
53
.10.1007/s40534-020-00203-0
6.
Zboinski
,
K.
, and
Dusza
,
M.
,
2011
, “
Extended Study of Railway Vehicle Lateral Stability in a Curved Track
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
789
810
.10.1080/00423111003770447
7.
Gao
,
X.
,
Li
,
Y.
, and
Yue
,
Y.
,
2012
, “
The ‘Resultant Bifurcation Diagram’ Method and Its Application to Bifurcation Behaviors of a Symmetric Railway Bogie System
,”
Nonlinear Dyn.
,
70
(
1
), pp.
363
380
.10.1007/s11071-012-0460-9
8.
Iwnicki
,
S. D.
,
Stichel
,
S.
,
Orlova
,
A.
, and
Hecht
,
M.
,
2015
, “
Dynamics of Railway Freight Vehicles
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
995
1033
.10.1080/00423114.2015.1037773
9.
Sun
,
Y.
,
Maksym
,
S.
, and
Colin
,
C.
,
2017
, “
Rail Passenger Vehicle Crashworthiness Simulations Using Multibody Dynamics Approaches
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
41015
.10.1115/1.4035470
10.
Shi
,
H.
,
Wang
,
L.
,
Nicolsen
,
B.
, and
Shabana
,
A. A.
,
2017
, “
Integration of Geometry and Analysis for the Study of Liquid Sloshing in Railroad Vehicle Dynamics
,”
Proc. Inst. Mech. Eng., Part K
,
231
(
4
), pp.
608
629
.10.1177/1464419317696418
11.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2018
, “
ANCF Analysis of the Crude Oil Sloshing in Railroad Vehicle Systems
,”
J. Sound Vib.
,
433
, pp.
493
516
.10.1016/j.jsv.2018.06.035
12.
Hao
,
D.
,
Zhao
,
B.
, and
Xie
,
J.
,
2018
, “
On the Singularity Theory Applied in Rail Vehicle Bifurcation Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
4
), p.
41001
. 10.1115/1.4038991
13.
Yong
,
Y.
, and
Zeng
,
J.
,
2018
, “
Hopf Bifurcation Analysis of Railway Bogie
,”
Nonlinear Dyn.
,
92
(
1
), pp.
107
117
.10.1007/s11071-017-3634-7
14.
Gazor
,
M.
, and
Kazemi
,
M.
,
2020
, “
Singularity: A Maple Library for Local Zero Bifurcation Control of Scalar Smooth Maps
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
1
), p.
11001
.10.1115/1.4045286
15.
Polach
,
O.
, and
Kaiser
,
I.
,
2012
, “
Comparison of Methods Analyzing Bifurcation and Hunting of Complex Rail Vehicle Models
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
41005
.10.1115/1.4006825
16.
Escalona
,
J. L.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2013
, “
Modelling of Structural Flexiblity in Multibody Railroad Vehicle Systems
,”
Veh. Syst. Dyn.
,
51
(
7
), pp.
1027
1058
.10.1080/00423114.2013.786835
17.
Zhai
,
W.
, and
Wang
,
K.
,
2010
, “
Lateral Hunting Stability of Railway Vehicles Running on Elastic Track Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
41009
.10.1115/1.4001908
18.
Wang
,
K.
, and
Zhai
,
W.
,
2001
, “
Lateral Stability Analysis of Cars on Resilient Track Structure
,”
Rolling Stock
,
39
(
7
), pp.
1
4
.
19.
Wang
,
K.
, and
Liu
,
P.
,
2012
, “
Lateral Stability Analysis of Heavy-Haul Vehicle on Curved Track Based on Wheel/Rail Coupled Dynamics
,”
J. Trans. Tech.
,
2
(
2
), pp.
150
157
.10.4236/jtts.2012.22016
20.
Sun
,
Y.
, and
Dhanasekar
,
M.
,
2004
, “
Importance of Track Modeling to the Determination of the Critical Speed of Wagons
,”
Veh. Syst. Dyn.
,
41
(Suppl.), pp.
232
241
. https://www.researchgate.net/publication/289390571_Importance_of_track_modeling_to_the_determination_of_the_critical_speed_of_wagons
21.
Kaiser
,
I.
, and
Popp
,
K.
,
2006
, “
Interaction of Elastic Wheelsets and Elastic Rails: Modeling and Simulation
,”
Veh. Syst. Dyn.
,
44
(
Suppl. 1
), pp.
932
939
.10.1080/00423110600907675
22.
Kaiser
,
I.
,
Poll
,
G.
,
Voss
,
G.
, and
Vinolas
,
J.
,
2019
, “
The Impact of Structural Flexibilities of Wheelsets and Rails on the Hunting Behaviour of a Railway Vehicle
,”
Veh. Syst. Dyn.
,
57
(
4
), pp.
564
594
.10.1080/00423114.2018.1484933
23.
Chamorro
,
R.
,
Escalona
,
J. L.
, and
González
,
M.
,
2011
, “
An Approach for Modeling Long Flexible Bodies With Application to Railroad Dynamics
,”
Multibody Syst. Dyn.
,
26
(
2
), pp.
135
152
.10.1007/s11044-011-9255-x
24.
Escalona
,
J. L.
,
Chamorro
,
R.
, and
Recuero
,
R.
,
2012
, “
Description of Methods for the Eigenvalue Analysis of Railroad Vehicles Including Track Flexibility
,”
ASME J. Comput. Nonlinear Dyn.
,
7
, p.
41009
.10.1115/1.4006729
25.
Gialleonardo
,
E. D.
,
Braghin
,
F.
, and
Bruni
,
S.
,
2012
, “
The Influence of Track Modelling Options on the Simulation of Rail Vehicle Dynamics
,”
J. Sound Vib.
,
331
(
19
), pp.
4246
4258
.10.1016/j.jsv.2012.04.024
26.
Ling
,
L.
,
Li
,
W.
,
Shang
,
H.
,
Xiao
,
X.
,
Wen
,
Z.
, and
Jin
,
X.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Rail Corrugation on the Behaviour of Rail Fastenings
,”
Veh. Syst. Dyn.
,
52
(
9
), pp.
1211
1231
.10.1080/00423114.2014.934844
27.
Zhai
,
W.
,
2020
,
Vehicle–Track Coupled Dynamics Theory and Applications
,
Springer
,
Singapore
.
28.
Zhai
,
W.
,
Wang
,
K.
, and
Cai
,
C.
,
2009
, “
Fundamentals of Vehicle–Track Coupled Dynamics
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1349
1376
.10.1080/00423110802621561
29.
Kalker
,
J.
,
1982
, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
(
1
), pp.
1
13
.10.1080/00423118208968684
30.
Zhai
,
M.
,
1996
, “
Two Simple Fast Integration Methods for Large-Scale Dynamic Problems in Engineering
,”
Int. J. Numer. Methods Eng.
,
39
(
24
), pp.
4199
4214
.10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
You do not currently have access to this content.