Abstract

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter’s cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.

References

1.
Wang
,
Y.
,
Hirose
,
K.
, and
Liberman
,
M. C.
,
2002
, “
Dynamics of Noise-Induced Cellular Injury and Repair in the Mouse Cochlea
,”
J. Assoc. Res. Otolaryngol.
,
3
(
3
), pp.
248
268
.10.1007/s101620020028
2.
Liang
,
J.
,
Wang
,
J.
,
Wang
,
M.
, and
Yao
,
W.
,
2024
, “
Pathogenic Mechanism Analysis of Cochlear Key Structural Lesion and Phonosensitive Hearing Loss
,”
Biomech. Model. Mechanobiol.
,
23
(
1
), pp.
87
101
.10.1007/s10237-023-01760-z
3.
Gao
,
L.
,
Wang
,
J.
,
Liang
,
J.
,
Yao
,
W.
,
Zhou
,
L.
, and
Huang
,
X.
,
2023
, “
Study of Fatigue Damage to the Cochlea
,”
Comput. Methods Biomech. Biomed. Eng.
,
26
(
16
), pp.
2047
2056
.10.1080/10255842.2022.2164712
4.
Bramhall
,
N. F.
,
Reavis
,
K. M.
,
Feeney
,
M. P.
, and
Kampel
,
S. D.
,
2022
, “
The Impacts of Noise Exposure on the Middle Ear Muscle Reflex in a Veteran Population
,”
Am. J. Audiol.
,
31
(
1
), pp.
126
142
.10.1044/2021_AJA-21-00133
5.
Frye
,
M. D.
,
Ryan
,
A. F.
, and
Kurabi
,
A.
,
2019
, “
Inflammation Associated With Noise-Induced Hearing Loss
,”
J. Acoust. Soc. Am.
,
146
(
5
), pp.
4020
4032
.10.1121/1.5132545
6.
Pourbakht
,
A.
, and
Yamasoba
,
T.
,
2003
, “
Cochlear Damage Caused by Continuous and Intermittent Noise Exposure
,”
Hear. Res.
,
178
(
1–2
), pp.
70
78
.10.1016/S0378-5955(03)00039-X
7.
Fetoni
,
A. R.
,
Pisani
,
A.
,
Rolesi
,
R.
,
Paciello
,
F.
,
Viziano
,
A.
,
Moleti
,
A.
,
Sisto
,
R.
,
Troiani
,
D.
,
Paludetti
,
G.
, and
Grassi
,
C.
,
2022
, “
Early Noise-Induced Hearing Loss Accelerates Presbycusis Altering Aging Processes in the Cochlea
,”
Front. Aging Neurosci.
,
14
, p.
803973
.10.3389/fnagi.2022.803973
8.
Duke
,
T.
, and
Jülicher
,
F.
,
2003
, “
Active Traveling Wave in the Cochlea
,”
Phys. Rev. Lett.
,
90
(
15
), p.
158101
.10.1103/PhysRevLett.90.158101
9.
Ruggero
,
M. A.
,
Narayan
,
S. S.
,
Temchin
,
A. N.
, and
Recio
,
A.
,
2000
, “
Mechanical Bases of Frequency Tuning and Neural Excitation at the Base of the Cochlea: Comparison of Basilar-Membrane Vibrations and Auditory-Nerve-Fiber Responses in Chinchilla
,”
Proc. Natl. Acad. Sci.
,
97
(
22
), pp.
11744
11750
.10.1073/pnas.97.22.11744
10.
Kolston
,
P. J.
,
1999
, “
Comparing in Vitro, in Situ, and in Vivo Experimental Data in a Three-Dimensional Model of Mammalian Cochlear Mechanics
,”
Proc. Natl. Acad. Sci.
,
96
(
7
), pp.
3676
3681
.10.1073/pnas.96.7.3676
11.
Yao
,
W.
, and
Chen
,
Y.
,
2017
, “
Numerical Simulation Based on Three-Dimensional Model of Inner Stereocilia
,”
Appl. Math. Mech.
,
38
(
7
), pp.
997
1006
.10.1007/s10483-017-2211-6
12.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
3024
3027
.10.1109/TBME.2011.2159714
13.
Ma
,
J.
,
Yao
,
W.
, and
Hu
,
B.
,
2020
, “
Simulation of the Multiphysical Coupling Behavior of Active Hearing Mechanism Within Spiral Cochlea
,”
ASME J. Biomech. Eng.
,
142
(
9
), p.
091005
.10.1115/1.4046204
14.
Yao
,
W.
,
Zhong
,
J.
, and
Duan
,
M.
,
2018
, “
Three-Dimensional Finite-Element Analysis of the Cochlear Hypoplasia
,”
Acta Oto-Laryngol.
,
138
(
11
), pp.
961
965
.10.1080/00016489.2018.1497304
15.
Jiang
,
S.
, and
Gan
,
R. Z.
,
2018
, “
Dynamic Properties of Human Incudostapedial Joint—Experimental Measurement and Finite Element Modeling
,”
Med. Eng. Phys.
,
54
, pp.
14
21
.10.1016/j.medengphy.2018.02.006
16.
Areias
,
B.
,
Parente
,
M. P.
,
Gentil
,
F.
,
Caroça
,
C.
,
Paço
,
J.
, and
Natal Jorge
,
R. M.
,
2022
, “
A Finite Element Model to Predict the Consequences of Endolymphatic Hydrops in the Basilar Membrane
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
1
), p.
e3541
.10.1002/cnm.3541
17.
Bradshaw
,
J. J.
,
Brown
,
M. A.
,
Jiang
,
S.
, and
Gan
,
R. Z.
,
2023
, “
3D Finite Element Model of Human Ear With 3-Chamber Spiral Cochlea for Blast Wave Transmission From the Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
51
(
5
), pp.
1106
1118
.10.1007/s10439-023-03200-6
18.
McReynolds
,
M. C.
,
2005
, “
Noise-Induced Hearing Loss
,”
Air Med. J.
,
24
(
2
), pp.
73
78
.10.1016/j.amj.2004.12.005
19.
Thomas
,
R. J.
,
2000
, “
Occupational Health—Recognizing and Preventing Work-Related Disease and Injury
,”
J. Occup. Environ. Med.
,
42
(
11
), pp.
1131
1132
.10.1097/00043764-200011000-00021
20.
Fernandez
,
K. A.
,
Guo
,
D.
,
Micucci
,
S.
,
De Gruttola
,
V.
,
Liberman
,
M. C.
, and
Kujawa
,
S. G.
,
2020
, “
Noise-Induced Cochlear Synaptopathy With and Without Sensory Cell Loss
,”
Neuroscience
,
427
, pp.
43
57
.10.1016/j.neuroscience.2019.11.051
21.
Win
,
K. N.
,
Balalla
,
N. B.
,
Lwin
,
M. Z.
, and
Lai
,
A.
,
2015
, “
Noise-Induced Hearing Loss in the Police Force
,”
Saf. Health Work
,
6
(
2
), pp.
134
138
.10.1016/j.shaw.2015.01.002
22.
Ding
,
T.
,
Yan
,
A.
, and
Liu
,
K.
,
2019
, “
What is Noise-Induced Hearing Loss?
,”
Br. J. Hosp. Med.
,
80
(
9
), pp.
525
529
.10.12968/hmed.2019.80.9.525
23.
Natarajan
,
N.
,
Batts
,
S.
, and
Stankovic
,
K. M.
,
2023
, “
Noise-Induced Hearing Loss
,”
J. Clin. Med.
,
12
(
6
), p.
2347
.10.3390/jcm12062347
24.
Pisani
,
A.
,
Paciello
,
F.
,
Montuoro
,
R.
,
Rolesi
,
R.
,
Galli
,
J.
, and
Fetoni
,
A. R.
,
2023
, “
Antioxidant Therapy as an Effective Strategy Against Noise-Induced Hearing Loss: From Experimental Models to Clinic
,”
Life
,
13
(
4
), p.
1035
.10.3390/life13041035
25.
Okur
,
M. N.
, and
Djalilian
,
H. R.
,
2022
, “
Approaches to Mitigate Mitochondrial Dysfunction in Sensorineural Hearing Loss
,”
Ann. Biomed. Eng.
,
50
(
12
), pp.
1762
1770
.10.1007/s10439-022-03103-y
26.
Bradshaw
,
J. J.
,
Bown
,
M. A.
,
Jiang
,
Y.
, and
Gan
,
R. Z.
,
2024
, “
3D Computational Modeling of Blast Transmission Through the Fluid-Filled Cochlea and Hair Cells
,”
Ann. Biomed. Eng.
, epub.10.1007/s10439-024-03659-x
27.
Greenwood
,
D. D.
,
1990
, “
A Cochlear Frequency‐Position Function for Several Species—29 Years Later
,”
J. Acoust. Soc. Am.
,
87
(
6
), pp.
2592
2605
.10.1121/1.399052
28.
Böhnke
,
F.
,
2019
, “
Nonlinear Distortions and Parametric Amplification Generate Otoacoustic Emissions and Increased Hearing Sensitivity
,”
Acoust.
,
1
(
3
), pp.
608
617
.10.3390/acoustics1030036
29.
Gueta
,
R.
,
Barlam
,
D.
,
Shneck
,
R. Z.
, and
Rousso
,
I.
,
2006
, “
Measurement of the Mechanical Properties of Isolated Tectorial Membrane Using Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci.
,
103
(
40
), pp.
14790
14795
.10.1073/pnas.0603429103
30.
Matsui
,
T.
,
Nakajima
,
C.
,
Yamamoto
,
Y.
,
Andoh
,
M.
,
Iida
,
K.
,
Murakoshi
,
M.
,
Kumano
,
S.
, and
Wada
,
H.
,
2006
, “
Analysis of the Dynamic Behavior of the Inner Hair Cell Stereocilia by the Finite Element Method
,”
JSME Int. J., Ser. C
,
49
(
3
), pp.
828
836
.10.1299/jsmec.49.828
31.
Motallebzadeh
,
H.
,
Soons
,
J. A.
, and
Puria
,
S.
,
2018
, “
Cochlear Amplification and Tuning Depend on the Cellular Arrangement Within the Organ of Corti
,”
Proc. Natl. Acad. Sci.
,
115
(
22
), pp.
5762
5767
.10.1073/pnas.1720979115
32.
Murakoshi
,
M.
,
Suzuki
,
S.
, and
Wada
,
H.
,
2015
, “
All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification
,”
BioMed Res. Int.
,
2015
(
1
), pp.
1
12
.10.1155/2015/727434
33.
Ramamoorthy
,
S.
,
Deo
,
N. V.
, and
Grosh
,
K.
,
2007
, “
A Mechano-Electro-Acoustical Model for the Cochlea: Response to Acoustic Stimuli
,”
J. Acoust. Soc. Am.
,
121
(
5
), pp.
2758
2773
.10.1121/1.2713725
34.
Sugawara
,
M.
,
Ishida
,
Y.
, and
Wada
,
H.
,
2004
, “
Mechanical Properties of Sensory and Supporting Cells in the Organ of Corti of the Guinea Pig Cochlea–Study by Atomic Force Microscopy
,”
Hear. Res.
,
192
(
1–2
), pp.
57
64
.10.1016/j.heares.2004.01.014
35.
Zagadou
,
B.
,
Barbone
,
P.
, and
Mountain
,
D.
,
2014
, “
Elastic Properties of Organ of Corti Tissues From Point-Stiffness Measurement and Inverse Analysis
,”
J. Biomech.
,
47
(
6
), pp.
1270
1277
.10.1016/j.jbiomech.2014.02.025
36.
Zwislocki
,
J. J.
, and
Cefaratti
,
L. K.
,
1989
, “
Tectorial Membrane II: Stiffness Measurements in Vivo
,”
Hear. Res.
,
42
(
2–3
), pp.
211
227
.10.1016/0378-5955(89)90146-9
37.
Gan
,
R. Z.
,
Reeves
,
B. P.
, and
Wang
,
X.
,
2007
, “
Modeling of Sound Transmission From Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2180
2195
.10.1007/s10439-007-9366-y
38.
Bradshaw
,
J. J.
,
Brown
,
M. A.
,
Jiang
,
S.
, and
Gan
,
R. Z.
,
2024
, “
3D Computational Modeling of Blast Wave Transmission in Human Ear From External Ear to Cochlear Hair Cells
,”
Mil. Med.
,
189
(
Suppl_3
), pp.
291
297
.10.1093/milmed/usae096
39.
Gan
,
R. Z.
,
Cheng
,
T.
,
Dai
,
C.
,
Yang
,
F.
, and
Wood
,
M. W.
,
2009
, “
Finite Element Modeling of Sound Transmission With Perforations of Tympanic Membrane
,”
J. Acoust. Soc. Am.
,
126
(
1
), pp.
243
253
.10.1121/1.3129129
40.
Aibara
,
R.
,
Welsh
,
J. T.
,
Puria
,
S.
, and
Goode
,
R. L.
,
2001
, “
Human Middle-Ear Sound Transfer Function and Cochlear Input Impedance
,”
Hear. Res.
,
152
(
1–2
), pp.
100
109
.10.1016/S0378-5955(00)00240-9
41.
Stenfelt
,
S.
,
Puria
,
S.
,
Hato
,
N.
, and
Goode
,
R. L.
,
2003
, “
Basilar Membrane and Osseous Spiral Lamina Motion in Human Cadavers With Air and Bone Conduction Stimuli
,”
Hear. Res.
,
181
(
1–2
), pp.
131
143
.10.1016/S0378-5955(03)00183-7
42.
Kimura
,
E.
,
Mizutari
,
K.
,
Kurioka
,
T.
,
Kawauchi
,
S.
,
Satoh
,
Y.
,
Sato
,
S.
, and
Shiotani
,
A.
,
2021
, “
Effect of Shock Wave Power Spectrum on the Inner Ear Pathophysiology in Blast-Induced Hearing Loss
,”
Sci. Rep.
,
11
(
1
), p.
14704
.10.1038/s41598-021-94080-0
43.
Mao
,
B.
,
Wang
,
Y.
,
Balasubramanian
,
T.
,
Urioste
,
R.
,
Wafa
,
T.
,
Fitzgerald
,
T. S.
,
Haraczy
,
S. J.
, et al.,
2021
, “
Assessment of Auditory and Vestibular Damage in a Mouse Model After Single and Triple Blast Exposures
,”
Hear. Res.
,
407
, p.
108292
.10.1016/j.heares.2021.108292
44.
Ehrenstein
,
D.
, and
Iwasa
,
K.
,
1996
, “
Viscoelastic Relaxation in the Membrane of the Auditory Outer Hair Cell
,”
Biophys. J.
,
71
(
2
), pp.
1087
1094
.10.1016/S0006-3495(96)79310-4
45.
Zuo
,
H.
,
Cui
,
B.
,
She
,
X.
, and
Wu
,
M.
,
2008
, “
Changes in Guinea Pig Cochlear Hair Cells after Sound Conditioning and Noise Exposure
,”
J. Occup. Health
,
50
(
5
), pp.
373
379
.10.1539/joh.l8032
46.
Fetoni
,
A. R.
,
Ralli
,
M.
,
Sergi
,
B.
,
Parrilla
,
C.
,
Troiani
,
D.
, and
Paludetti
,
G.
,
2009
, “
Protective Effects of N-Acetylcysteine on Noise-Induced Hearing Loss in Guinea Pigs
,”
Acta Otorhinolaryngol. Ital.
,
29
(
2
), pp.
70
75
.
47.
Madayag
,
A. F.
, 1969
,
Metal Fatigue: Theory and Design
,
John Wiley & Sons, Hoboken, NJ.
48.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
, 2020
,
Fundamentals of Machine Component Design
,
John Wiley & Sons, Hoboken, NJ.
49.
Neviaser
,
A.
,
Andarawis-Puri
,
N.
, and
Flatow
,
E.
,
2012
, “
Basic Mechanisms of Tendon Fatigue Damage
,”
J. Shoulder Elbow Surg.
,
21
(
2
), pp.
158
163
.10.1016/j.jse.2011.11.014
You do not currently have access to this content.