Abstract

This study aimed to compare the sinking and shifting characteristics of an enhanced expulsion-proof intervertebral fusion device (EEIFD) with a traditional transforaminal lumbar interbody fusion device (TTLIFD). Five specimens of each device were selected for analysis. Four mechanical tests—compression, subsidence, expulsion, and torque—were conducted for each cage. Additionally, a blade-cutting torque test was performed on the EEIFD, with load–displacement curves and mechanical values recorded. In static axial compression, static subsidence, and dynamic subsidence tests, the EEIFD demonstrated performance comparable to the TTLIFD. In expulsion testing, the maximum expulsion force for the EEIFD when the blade was rotated out (534.02 ± 21.24 N) was significantly higher than when the blade was not rotated out (476.97 ± 24.45 N) (P = 6.81 × 10−4). Moreover, the maximum expulsion force for the EEIFD with blade rotation (534.02 ± 21.24 N) was significantly higher than that of the TTLIFD (444.01 ± 12.42 N) (P = 9.82 × 10−5). These findings indicated that the EEIFD effectively enhanced expulsion prevention and antisubsidence performance.

References

1.
Tavares
,
W. M.
,
de França
,
S. A.
,
Paiva
,
W. S.
, and
Teixeira
,
M. J.
,
2022
, “
A Systematic Review and Meta-Analysis of Fusion Rate Enhancements and Bone Graft Options for Spine Surgery
,”
Sci. Rep.
,
12
(
1
), p.
7546
.10.1038/s41598-022-11551-8
2.
de Kunder
,
S. L.
,
Rijkers
,
K.
,
Caelers
,
I. J.
,
de Bie
,
R. A.
,
Koehler
,
P. J.
, and
van Santbrink
,
H.
,
2018
, “
Lumbar Interbody Fusion: A Historical Overview and a Future Perspective
,”
Spine (Phila Pa 1976)
,
43
(
16
), pp.
1161
1168
.10.1097/BRS.0000000000002534
3.
Park
,
M.-K.
,
Kim
,
K.-T.
,
Bang
,
W.-S.
,
Cho
,
D.-C.
,
Sung
,
J.-K.
,
Lee
,
Y.-S.
,
Lee
,
C. K.
, et al.,
2019
, “
Risk Factors for Cage Migration and Cage Retropulsion Following Transforaminal Lumbar Interbody Fusion
,”
Spine J.
,
19
(
3
), pp.
437
447
.10.1016/j.spinee.2018.08.007
4.
Pan
,
F.-M.
,
Wang
,
S.-J.
,
Yong
,
Z.-Y.
,
Liu
,
X.-M.
,
Huang
,
Y.-F.
, and
Wu
,
D.-S.
,
2016
, “
Risk Factors for Cage Retropulsion After Lumbar Interbody Fusion Surgery: Series of Cases and Literature Review
,”
Int. J. Surg.
,
30
, pp.
56
62
.10.1016/j.ijsu.2016.04.025
5.
Liu
,
K.
,
Chang
,
H.
,
Wang
,
L.
,
Wang
,
C.
,
Chen
,
T.
, and
Meng
,
X.
,
2019
, “
Risk Factors for Cage Retropulsion After Lumbar Interbody Fusion: Systematic Review and Meta-Analysis
,”
World Neurosurg.
,
132
, pp.
273
281
.10.1016/j.wneu.2019.09.019
6.
Hu
,
Y.-H.
,
Niu
,
C.-C.
,
Hsieh
,
M.-K.
,
Tsai
,
T.-T.
,
Chen
,
W.-J.
, and
Lai
,
P.-L.
,
2019
, “
Cage Positioning as a Risk Factor for Posterior Cage Migration Following Transforaminal Lumbar Interbody Fusion—An Analysis of 953 Cases
,”
BMC Musculoskeletal Disord.
,
20
(
1
), p.
260
.10.1186/s12891-019-2630-0
7.
Adl Amini
,
D.
,
Okano
,
I.
,
Oezel
,
L.
,
Zhu
,
J.
,
Chiapparelli
,
E.
,
Shue
,
J.
,
Sama
,
A. A.
, et al.,
2021
, “
Evaluation of Cage Subsidence in Standalone Lateral Lumbar Interbody Fusion: Novel 3D-Printed Titanium Versus Polyetheretherketone (PEEK) Cage
,”
Eur. Spine J.
,
30
(
8
), pp.
2377
2384
.10.1007/s00586-021-06912-2
8.
Tsuang
,
F. Y.
,
Li
,
M. J.
,
Chu
,
P. H.
,
Tsou
,
N. T.
, and
Sun
,
J. S.
,
2023
, “
Mechanical Performance of Porous Biomimetic Intervertebral Body Fusion Devices: An In Vitro Biomechanical Study
,”
J. Orthop. Surg. Res.
,
18
(
1
), p.
71
.10.1186/s13018-023-03556-4
9.
Wu
,
Y.
,
Ma
,
J.
,
Dai
,
J.
,
Wang
,
Y.
,
Bai
,
H.
,
Lu
,
B.
,
Chen
,
J.
, et al.,
2023
, “
Design and Biomechanical Evaluation of a Bidirectional Expandable Cage for Oblique Lateral Interbody Fusion
,”
World Neurosurg.
,
180
, pp.
e644
e652
.10.1016/j.wneu.2023.10.003
10.
ASTM International,
2018
,
Standard Test Methods For Intervertebral Body Fusion Devices
,
ASTM F2077-18,
ASTM International
,
West Conshohocken, PA
.
11.
ASTM International
,
2018
,
Standard Test Method for Measuring Load Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression
, ASTM F2267-22,
ASTM International
,
West Conshohocken, PA
.
12.
Kumar
,
M.
,
Meena
,
V. K.
, and
Singh
,
S.
,
2022
, “
Static and Fatigue Load Bearing Investigation on Porous Structure Titanium Additively Manufactured Anterior Cervical Cages
,”
Biomed. Res Int.
,
2022
, p.
6534749
.10.1155/2022/6534749
13.
Chen
,
X.
,
Kohan
,
S.
,
Bhargav
,
D.
,
Choi
,
J.
,
Perera
,
S.
,
Dean
,
C.
,
Chopra
,
N.
, et al.,
2023
, “
Phase 1 Evaluation of an Elastomeric Nucleus Pulposus Device as an Option to Augment Disc at Microdiscectomy: Experimental Results From Biomechanical and Biocompatibility Testing and First in Human
,”
JOR Spine
,
6
(
2
), p.
e1250
.10.1002/jsp2.1250
14.
Mo
,
Z.
,
Li
,
D.
,
Zhang
,
R.
,
Chang
,
M.
,
Yang
,
B.
, and
Tang
,
S.
,
2018
, “
Comparative Effectiveness and Safety of Posterior Lumbar Interbody Fusion, Coflex, Wallis, and X-Stop for Lumbar Degenerative Diseases: A Systematic Review and Network Meta-Analysis
,”
Clin. Neurol. Neurosurg.
,
172
, pp.
74
81
.10.1016/j.clineuro.2018.06.030
15.
Yuan
,
W.
,
Kaliya-Perumal
,
A. K.
,
Chou
,
S. M.
, and
Oh
,
J. Y.
,
2020
, “
Does Lumbar Interbody Cage Size Influence Subsidence? A Biomechanical Study
,”
Spine (Phila Pa 1976)
,
45
(
2
), pp.
88
95
.10.1097/BRS.0000000000003194
16.
Mobbs
,
R. J.
,
Phan
,
K.
,
Malham
,
G.
,
Seex
,
K.
, and
Rao
,
P. J.
,
2015
, “
Lumbar Interbody Fusion: Techniques, Indications and Comparison of Interbody Fusion Options Including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF
,”
J. Spine Surg.
,
1
(
1
), pp.
2
18
.10.3978/j.issn.2414-469X.2015.10.05
17.
Wallace
,
N.
,
Schaffer
,
N. E.
,
Aleem
,
I. S.
, and
Patel
,
R.
,
2020
, “
3D-Printed Patient-Specific Spine Implants: A Systematic Review
,”
Clin. Spine Surg.
,
33
(
10
), pp.
400
407
.10.1097/BSD.0000000000001026
18.
Patel
,
R.
,
2018
,
Does Patient-Specific Implant Design Reduce Subsidence Risk in Lumbar Interbody Fusion? A Bottom Up Analysisof Methods to Reduce Vertebral Endplate Stress
,
College of Engineering and Applied Sciences, University of Colorado Denver
,
Denver, CO
.
19.
Chatham
,
L. S.
,
Patel
,
V. V.
,
Yakacki
,
C. M.
, and
Carpenter
,
D.
,
2017
, “
Interbody Spacer Material Properties and Design Conformity for Reducing Subsidence During Lumbar Interbody Fusion
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051005
.10.1115/1.4036312
20.
Fogel
,
G.
,
Martin
,
N.
,
Williams
,
G. M.
,
Unger
,
J.
,
Yee-Yanagishita
,
C.
,
Pelletier
,
M.
,
Walsh
,
W.
,
Peng
,
Y.
, and
Jekir
,
M.
,
2022
, “
Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance
,”
World Neurosurg.
,
162
, pp.
e626
e634
.10.1016/j.wneu.2022.03.087
21.
Savio
,
D.
, and
Bagno
,
A.
,
2022
, “
When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect
,”
Processes
,
10
(
3
), p.
612
.10.3390/pr10030612
22.
Fernandes
,
R. J. R.
,
Gee
,
A.
,
Kanawati
,
A. J.
,
Siddiqi
,
F.
,
Rasoulinejad
,
P.
,
Zdero
,
R.
, and
Bailey
,
C. S.
,
2024
, “
Biomechanical Comparison of Subsidence Between Patient-Specific and Non-Patient-Specific Lumbar Interbody Fusion Cages
,”
Global Spine J.
,
14
(
4
), pp.
1155
1163
.10.1177/21925682221134913
23.
Marie-Hardy
,
L.
,
Pascal-Moussellard
,
H.
,
Barnaba
,
A.
,
Bonaccorsi
,
R.
, and
Scemama
,
C.
,
2020
, “
Screw Loosening in Posterior Spine Fusion: Prevalence and Risk Factors
,”
Global Spine J.
,
10
(
5
), pp.
598
602
.10.1177/2192568219864341
24.
Leitner
,
L.
,
Malaj
,
I.
,
Sadoghi
,
P.
,
Amerstorfer
,
F.
,
Glehr
,
M.
,
Vander
,
K.
,
Leithner
,
A.
, and
Radl
,
R.
,
2018
, “
Pedicle Screw Loosening is Correlated to Chronic Subclinical Deep Implant Infection: A Retrospective Database Analysis
,”
Eur. Spine J.
,
27
(
10
), pp.
2529
2535
.10.1007/s00586-018-5592-2
25.
Kimura
,
H.
,
Shikata
,
J.
,
Odate
,
S.
,
Soeda
,
T.
, and
Yamamura
,
S.
,
2012
, “
Risk Factors for Cage Retropulsion After Posterior Lumbar Interbody Fusion: Analysis of 1070 Cases
,”
Spine (Phila Pa 1976)
,
37
(
13
), pp.
1164
1169
.10.1097/BRS.0b013e318257f12a
26.
Pisano
,
A. J.
,
Fredericks
,
D. R.
,
Steelman
,
T.
,
Riccio
,
C.
,
Helgeson
,
M. D.
, and
Wagner
,
S. C.
,
2020
, “
Lumbar Disc Height and Vertebral Hounsfield Units: Association With Interbody Cage Subsidence
,”
Neurosurg. Focus
,
49
(
2
), p.
E9
.10.3171/2020.4.FOCUS20286
27.
Palepu
,
V.
,
Kiapour
,
A.
,
Goel
,
V. K.
, and
Moran
,
J. M.
,
2014
, “
A Unique Modular Implant System Enhances Load Sharing in Anterior Cervical Interbody Fusion: A Finite Element Study
,”
Biomed. Eng. Online
,
13
(
1
), p.
26
.10.1186/1475-925X-13-26
28.
Gomez
,
G.
, and
Westerlund
,
L. E.
,
2021
, “
Clinical and Radiographic Outcomes Using Third-Generation Bioactive Glass as a Bone Graft Substitute for Multi-Level Anterior Cervical Discectomy and Fusion-a Retrospective Case Series Study
,”
J Spine Surg.
,
7
(
2
), pp.
124
131
.10.21037/jss-20-645
29.
McGilvray
,
K. C.
,
Easley
,
J.
,
Seim
,
H. B.
,
Regan
,
D.
,
Berven
,
S. H.
,
Hsu
,
W. K.
,
Mroz
,
T. E.
, and
Puttlitz
,
C. M.
,
2018
, “
Bony Ingrowth Potential of 3D-Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an In Vivo Ovine Lumbar Fusion Model
,”
Spine J.
,
18
(
7
), pp.
1250
1260
.10.1016/j.spinee.2018.02.018
30.
Okano
,
I.
,
Jones
,
C.
,
Rentenberger
,
C.
,
Sax
,
O. C.
,
Salzmann
,
S. N.
,
Reisener
,
M.-J.
,
Shue
,
J.
,
Carrino
,
J. A.
,
Sama
,
A. A.
,
Cammisa
,
F. P.
,
Girardi
,
F. P.
, and
Hughes
,
A. P.
,
2020
, “
The Association Between Endplate Changes and Risk for Early Severe Cage Subsidence Among Standalone Lateral Lumbar Interbody Fusion Patients
,”
Spine (Phila Pa 1976)
,
45
(
23
), pp.
e1580
e1587
.10.1097/BRS.0000000000003668
31.
Singhatanadgige
,
W.
,
Sukthuayat
,
A.
,
Tanaviriyachai
,
T.
,
Kongtharvonskul
,
J.
,
Tanasansomboon
,
T.
,
Kerr
,
S. J.
, and
Limthongkul
,
W.
,
2021
, “
Risk Factors for Polyetheretherketone Cage Subsidence Following Minimally Invasive Transforaminal Lumbar Interbody Fusion
,”
Acta Neurochir (Wien)
,
163
(
9
), pp.
2557
2565
.10.1007/s00701-021-04923-y
You do not currently have access to this content.