Abstract

Presently, developments in weightbearing computed tomography and biplanar fluoroscopy technologies offer exciting avenues for investigating normative and pathologic foot function with increasing precision. Still, data quantifying sesamoid bone and proximal phalange motion are currently sparse. To express joint kinematics and compare various clinical cohorts, future studies of first ray motion will necessitate robust coordinate frames that respect the variations in underlying anatomy while also aligning closely with the functional, physiological axes of motion. These activity-dependent functional axes may be represented by a mean helical axis of the joint motion. Our cadaveric study quantified joint kinematics from weightbearing computed tomography scans during simulated toe lift and heel rise tasks. We compared the spatial orientations of the mean finite helical axes of the metatarsosesamoidal and metatarsophalangeal joints to the primary joint axis of two relevant methods for defining metatarsal coordinate frames: inertial axes and fitting of geometric primitives. The resultant kinematics exhibited less crosstalk when using a metatarsal coordinate system based on fitting cylindrical primitives to the bony anatomy compared to using principal component axes. Respective metatarsophalangeal and metatarsosesamoidal arthrokinematic contact paths and instantaneous centers of rotation were similar between activities and agree well with currently published data. This study outlines a methodology for quantitatively assessing the efficacy and utility of various anatomical joint coordinate system definitions. Improvements in our ability to characterize the shape and motion of foot bones in the context of functional tasks will elucidate their biomechanical roles and aid clinicians in refining treatment strategies.

References

1.
Anwar
,
R.
,
Anjum
,
S. N.
, and
Nicholl
,
J. E.
,
2005
, “
Sesamoids of the Foot
,”
Curr. Orthop.
,
19
(
1
), pp.
40
48
.10.1016/j.cuor.2005.01.001
2.
Richardson
,
E. G.
,
1999
, “
Hallucal Sesamoid Pain: Causes and Surgical Treatment
,”
J. Am. Acad. Orthop. Surg.
,
7
(
4
), pp.
270
278
.10.5435/00124635-199907000-00007
3.
Boike
,
A.
,
Schnirring-Judge
,
M.
, and
McMillin
,
S.
,
2011
, “
Sesamoid Disorders of the First Metatarsophalangeal Joint
,”
Clin. Podiat. Med. Surg.
,
28
(
2
), pp.
269
285
.10.1016/j.cpm.2011.03.006
4.
Leventen
,
E. O.
,
1991
, “
Sesamoid Disorders and Treatment: An Update
,”
Clin. Orthop. Relat. Res.
,
269
, pp.
236
240
.10.1097/00003086-199108000-00033
5.
Goldberg
,
I.
, and
Nathan
,
H.
,
1987
, “
Anatomy and Pathology of the Sesamoid Bones - The Hand Compared to the Foot
,”
Int. Orthop.
,
11
(
2
), pp.
141
147
.10.1007/BF00266700
6.
Derner
,
R.
,
Goss
,
K.
,
Postowski
,
H. N.
, and
Parsley
,
N.
,
2005
, “
A Plantarflexory-Shortening Osteotomy for Hallux Rigidus: A Retrospective Analysis
,”
J. Foot Ankle Surg.
,
44
(
5
), pp.
377
389
.10.1053/j.jfas.2005.07.010
7.
Smith
,
R. W.
,
Reynolds
,
J. C.
, and
Stewart
,
M. J.
,
1984
, “
Hallux Valgus Assessment: Report of Research Committee of American Orthopaedic Foot and Ankle Society
,”
Foot Ankle
,
5
(
2
), pp.
92
103
.10.1177/107110078400500208
8.
Shereff
,
M. J.
,
Bejjani
,
F. J.
, and
Kummer
,
F. J.
,
1986
, “
Kinematics of the First Metatarsophalangeal Joint
,”
J. Bone Jt. Surg. Ser. A
,
68
(
3
), pp.
392
398
.10.2106/00004623-198668030-00012
9.
Jamal
,
B.
,
Pillai
,
A.
,
Fogg
,
Q.
, and
Kumar
,
S.
,
2015
, “
The Metatarsosesamoid Joint: An In Vitro 3D Quantitative Assessment
,”
Foot Ankle Surg.
,
21
(
1
), pp.
22
25
.10.1016/j.fas.2014.08.010
10.
Ahn
,
T. K.
,
Kitaoka
,
H. B.
,
Luo
,
Z. P.
, and
An
,
K. N.
,
1997
, “
Kinematics and Contact Characteristics of the First Metatarsophalangeal Joint
,”
Foot Ankle Int.
,
18
(
3
), pp.
170
174
.10.1177/107110079701800310
11.
Karasick
,
D.
, and
Schweitzer
,
M. E.
,
1998
, “
Disorders of the Hallux Sesamoid Complex: MR Features
,”
Skeletal Radiol.
,
27
(
8
), pp.
411
418
.10.1007/s002560050410
12.
Nery
,
C.
,
Baumfeld
,
D.
,
Umans
,
H.
, and
Yamada
,
A. F.
,
2017
, “
MR Imaging of the Plantar Plate: Normal Anatomy, Turf Toe, and Other Injuries
,”
Magn. Reson. Imaging Clin. N. Am.
,
25
(
1
), pp.
127
144
.10.1016/j.mric.2016.08.007
13.
Duan
,
X.
,
Li
,
L.
,
Wei
,
D. Q.
,
Liu
,
M.
,
Yu
,
X.
,
Xu
,
Z.
,
Long
,
Y.
, and
Xiang
,
Z.
,
2017
, “
Role of Magnetic Resonance Imaging Versus Ultrasound for Detection of Plantar Plate Tear
,”
J. Orthop. Surg. Res.
,
12
(
1
), p.
14
.10.1186/s13018-016-0507-6
14.
Deschamps
,
K.
,
Staes
,
F.
,
Bruyninckx
,
H.
,
Busschots
,
E.
,
Jaspers
,
E.
,
Atre
,
A.
, and
Desloovere
,
K.
,
2012
, “
Repeatability in the Assessment of Multi-Segment Foot Kinematics
,”
Gait Posture
,
35
(
2
), pp.
255
260
.10.1016/j.gaitpost.2011.09.016
15.
Leardini
,
A.
,
Benedetti
,
M. G.
,
Berti
,
L.
,
Bettinelli
,
D.
,
Nativo
,
R.
, and
Giannini
,
S.
,
2007
, “
Rear-Foot, Mid-Foot and Fore-Foot Motion During the Stance Phase of Gait
,”
Gait Posture
,
25
(
3
), pp.
453
462
.10.1016/j.gaitpost.2006.05.017
16.
Okita
,
N.
,
Meyers
,
S. A.
,
Challis
,
J. H.
, and
Sharkey
,
N. A.
,
2013
, “
Segmental Motion of Forefoot and Hindfoot as a Diagnostic Tool
,”
J. Biomech.
,
46
(
15
), pp.
2578
2585
.10.1016/j.jbiomech.2013.08.014
17.
de Cesar Netto
,
C.
,
Myerson
,
M. S.
,
Day
,
J.
,
Ellis
,
S. J.
,
Hintermann
,
B.
,
Johnson
,
J. E.
,
Sangeorzan
,
B. J.
,
Schon
,
L. C.
,
Thordarson
,
D. B.
, and
Deland
,
J. T.
,
2020
, “
Consensus for the Use of Weightbearing CT in the Assessment of Progressive Collapsing Foot Deformity
,”
Foot Ankle Int.
,
41
(
10
), pp.
1277
1282
.10.1177/1071100720950734
18.
Lintz
,
F.
,
Beaudet
,
P.
,
Richardi
,
G.
, and
Brilhault
,
J.
,
2021
, “
Weight-Bearing CT in Foot and Ankle Pathology
,”
Orthop. Traumatol. Surg. Res.
,
107
(
1
), p.
102772
.10.1016/j.otsr.2020.102772
19.
MacWilliams
,
B. A.
, and
Davis
,
R. B.
,
2013
, “
Addressing Some Misperceptions of the Joint Coordinate System
,”
ASME J. Biomech. Eng.
,
135
(
5
), p.
054506
.10.1115/1.4024142
20.
Dabirrahmani
,
D.
, and
Hogg
,
M.
,
2017
, “
Modification of the Grood and Suntay Joint Coordinate System Equations for Knee Joint Flexion
,”
Med. Eng. Phys.
,
39
, pp.
113
116
.10.1016/j.medengphy.2016.10.006
21.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
22.
Brown
,
J. A.
,
Gale
,
T.
, and
Anderst
,
W.
,
2020
, “
An Automated Method for Defining Anatomic Coordinate Systems in the Hindfoot
,”
J. Biomech.
,
109
, pp.
109951
109951
.10.1016/j.jbiomech.2020.109951
23.
Lenz
,
A. L.
,
Strobel
,
M. A.
,
Anderson
,
A. M.
,
Fial
,
A. V.
,
MacWilliams
,
B. A.
,
Krzak
,
J. J.
, and
Kruger
,
K. M.
,
2021
, “
Assignment of Local Coordinate Systems and Methods to Calculate Tibiotalar and Subtalar Kinematics: A Systematic Review
,”
J. Biomech.
,
120
, p.
110344
.10.1016/j.jbiomech.2021.110344
24.
Kitashiro
,
M.
,
Ogihara
,
N.
,
Kokubo
,
T.
,
Matsumoto
,
M.
,
Nakamura
,
M.
, and
Nagura
,
T.
,
2017
, “
Age- and Sex-Associated Morphological Variations of Metatarsal Torsional Patterns in Humans
,”
Clin. Anat.
,
30
(
8
), pp.
1058
1063
.10.1002/ca.22944
25.
Matsuura
,
Y.
,
Ogihara
,
N.
, and
Nakatsukasa
,
M.
,
2010
, “
A Method for Quantifying Articular Surface Morphology of Metacarpals Using Quadric Surface Approximation
,”
Int. J. Primatol.
,
31
(
2
), pp.
263
274
.10.1007/s10764-010-9397-3
26.
Halilaj
,
E.
,
Rainbow
,
M. J.
,
Got
,
C. J.
,
Moore
,
D. C.
, and
Crisco
,
J. J.
,
2013
, “
A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry
,”
J. Biomech.
,
46
(
5
), pp.
1031
1034
.10.1016/j.jbiomech.2012.12.002
27.
Renault
,
J.-B.
,
Aüllo-Rasser
,
G.
,
Donnez
,
M.
,
Parratte
,
S.
, and
Chabrand
,
P.
,
2018
, “
Articular-Surface-Based Automatic Anatomical Coordinate Systems for the Knee Bones
,”
J. Biomech.
,
80
, pp.
171
178
.10.1016/j.jbiomech.2018.08.028
28.
Miranda
,
D. L.
,
Rainbow
,
M. J.
,
Leventhal
,
E. L.
,
Crisco
,
J. J.
, and
Fleming
,
B. C.
,
2010
, “
Automatic Determination of Anatomical Coordinate Systems for Three-Dimensional Bone Models of the Isolated Human Knee
,”
J. Biomech.
,
43
(
8
), pp.
1623
1626
.10.1016/j.jbiomech.2010.01.036
29.
Wang
,
B.
,
Roach
,
K. E.
,
Kapron
,
A. L.
,
Fiorentino
,
N. M.
,
Saltzman
,
C. L.
,
Singer
,
M.
, and
Anderson
,
A. E.
,
2015
, “
Accuracy and Feasibility of High-Speed Dual Fluoroscopy and Model-Based Tracking to Measure In Vivo Ankle Arthrokinematics
,”
Gait Posture
,
41
(
4
), pp.
888
893
.10.1016/j.gaitpost.2015.03.008
30.
Parr
,
W. C.
,
Chatterjee
,
H. J.
, and
Soligo
,
C.
,
2012
, “
Calculating the Axes of Rotation for the Subtalar and Talocrural Joints Using 3D Bone Reconstructions
,”
J. Biomech.
,
45
(
6
), pp.
1103
1107
.10.1016/j.jbiomech.2012.01.011
31.
Yin
,
L.
,
Chen
,
K.
,
Guo
,
L.
,
Cheng
,
L.
,
Wang
,
F.
, and
Yang
,
L.
,
2015
, “
Identifying the Functional Flexion-Extension Axis of the Knee: An In-Vivo Kinematics Study
,”
PLoS One
,
10
(
6
), p.
e0128877
.10.1371/journal.pone.0128877
32.
Best
,
G. M.
,
Mack
,
Z. E.
,
Pichora
,
D. R.
,
Crisco
,
J. J.
,
Kamal
,
R. N.
, and
Rainbow
,
M. J.
,
2019
, “
Differences in the Rotation Axes of the Scapholunate Joint During Flexion-Extension and Radial-Ulnar Deviation Motions
,”
J. Hand Surg. Am.
,
44
(
9
), pp.
772
778
.10.1016/j.jhsa.2019.05.001
33.
Hull
,
M. L.
,
2020
, “
Coordinate System Requirements to Determine Motions of the Tibiofemoral Joint Free From Kinematic Crosstalk Errors
,”
J. Biomech.
,
109
, pp.
109928
109928
.10.1016/j.jbiomech.2020.109928
34.
Nagle
,
T. F.
,
Erdemir
,
A.
, and
Colbrunn
,
R. W.
,
2021
, “
A Generalized Framework for Determination of Functional Musculoskeletal Joint Coordinate Systems
,”
J. Biomech.
,
127
, p.
110664
.10.1016/j.jbiomech.2021.110664
35.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
36.
Brenner
,
E.
,
2003
, “
The Intersesamoidal Ridge of the First Metatarsal Bone: Anatomical Basics and Clinical Considerations
,”
Surg. Radiol. Anat.
,
25
(
2
), pp.
127
131
.10.1007/s00276-003-0107-0
37.
Drapeau
,
M. S.
, and
Harmon
,
E. H.
,
2013
, “
Metatarsal Torsion in Monkeys, Apes, Humans and Australopiths
,”
J. Hum. Evol.
,
64
(
1
), pp.
93
108
.10.1016/j.jhevol.2012.10.008
38.
Mortier
,
J. P.
,
Bernard
,
J. L.
, and
Maestro
,
M.
,
2012
, “
Axial Rotation of the First Metatarsal Head in a Normal Population and Hallux Valgus Patients
,”
Orthop. Traumatol. Surg. Res.
,
98
(
6
), pp.
677
683
.10.1016/j.otsr.2012.05.005
39.
Hintermann
,
B.
,
Nigg
,
B. M.
, and
Sommer
,
C.
,
1994
, “
Foot Movement and Tendon Excursion: An In Vitro Study
,”
Foot Ankle Int.
,
15
(
7
), pp.
386
395
.10.1177/107110079401500708
40.
Aubin
,
P. M.
,
2010
,
The Robotic Gait Simulator: A Dynamic Cadaveric Foot and Ankle Model for Biomechanics Research
,
University of Washington
, Seattle, WA.
41.
Jackson
,
L. T.
,
Aubin
,
P. M.
,
Cowley
,
M. S.
,
Sangeorzan
,
B. J.
, and
Ledoux
,
W. R.
,
2011
, “
A Robotic Cadaveric Flatfoot Analysis of Stance Phase
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051005
.10.1115/1.4003869
42.
Hu
,
Y.
,
Ledoux
,
W. R.
,
Fassbind
,
M.
,
Rohr
,
E. S.
,
Sangeorzan
,
B. J.
, and
Haynor
,
D.
,
2011
, “
Multi-Rigid Image Segmentation and Registration for the Analysis of Joint Motion From Three-Dimensional Magnetic Resonance Imaging
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101005
.10.1115/1.4005175
43.
Mattes
,
D.
,
Haynor
,
D. R.
,
Vesselle
,
H.
,
Lewellyn
,
T. K.
, and
Eubank
,
W.
,
2001
, “
Nonrigid Multimodality Image Registration
,”
Proceedings of SPIE- The International Society for Optical Engineering
, Vol. 4322.10.1117/12.431046
44.
Beveridge
,
J. E.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
2014
, “
Repeatability and Precision of a Weighted Centroid Method for Estimating Dynamic In Vivo Tibiofemoral Surface Interactions in Sheep
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
16
), pp.
1853
1863
.10.1080/10255842.2013.772592
45.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
,
1980
, “
Rigid Body Motion Calculated From Spatial co-Ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.10.1016/0021-9290(80)90020-2
46.
Woltring
,
H. J.
,
Huiskes
,
R.
,
de Lange
,
A.
, and
Veldpaus
,
F. E.
,
1985
, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
,
18
(
5
), pp.
379
389
.10.1016/0021-9290(85)90293-3
47.
Ehrig
,
R. M.
, and
Heller
,
M. O.
,
2019
, “
On Intrinsic Equivalences of the Finite Helical Axis, the Instantaneous Helical Axis, and the SARA Approach. A Mathematical Perspective
,”
J. Biomech.
,
84
, pp.
4
10
.10.1016/j.jbiomech.2018.12.034
48.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2007
, “
A Survey of Formal Methods for Determining Functional Joint Axes
,”
J. Biomech.
,
40
(
10
), pp.
2150
2157
.10.1016/j.jbiomech.2006.10.026
49.
Cardot
,
H.
,
2020
, “
Gmedian: Geometric Median, k-Medians Clustering and Robust Median PCA
,”
R package version 1.2.7
.https://CRAN.R-project.org/package=Gmedian
50.
Woltring
,
H. J.
,
1990
, “
Estimation of the Trajectory of the Instantaneous Centre of Rotation in Planar Biokinematics
,”
J. Biomech.
,
23
(
12
), pp.
1273
1274
.10.1016/0021-9290(90)90385-G
51.
Woltring
,
H. J.
,
de Lange
,
A.
,
Kauer
,
J. M. G.
, and
Huiskes
,
R.
,
1987
, “
Instantaneous Helical Axis Estimation Via Natural, Cross-Validated Splines
,”
Biomechanics: Basic and Applied Research
,
G.
Bergmann
,
R.
Kolbel
, and
A.
Rolhmann
, eds.,
Springer
,
Dordrecht, The Netherlands
.
52.
Elhabian
,
S.
,
Agrawal
,
P.
,
Cates
,
J.
,
Datar
,
M.
, and
Whitaker
,
R.
,
2012
, “
ShapeWorks Studio v2.2 Particle-Based Shape Correspondence and Visualization Software
,”
Statistical Shape and Deformation Analysis
, Elsevier Academic Press, Cambridge, MA, pp.
257
298
.http://www.sci.utah.edu/~shireen/pdfs/tutorials/ShapeWorksStudioLab_v2.pdf
53.
Cates
,
J.
,
Elhabian
,
S.
, and
Whitaker
,
R.
,
2017
, “
Chapter 10 - ShapeWorks: Particle-Based Shape Correspondence and Visualization Software
,”
Statistical Shape and Deformation Analysis
,
G.
Zheng
,
S.
Li
, and
G.
Székely
, eds., Elsevier
Academic Press
, Cambridge, MA, pp.
257
298
.
54.
Mardia
,
K. V.
, and
Jupp
,
P. E.
,
2000
,
Directional Statistics
,
John and Wiley
, London, UK.
55.
R Core Team
,
2019
, “
R: A Language and Environment for Statistical Computing
,”
R Foundation for Statistical Computing
,
Vienna, Austria
.
56.
Tsagris
,
M.
,
Athineou
,
G.
,
Sajib
,
A.
,
Amson
,
E.
, and
Waldstein
,
M.
,
2021
, “Directional: A Collection of R Functions for Directional Data Analysis,”
R package version 5.3
.https://CRAN.R-project.org/package=Directional
57.
Peña Fernández
,
M.
,
Hoxha
,
D.
,
Chan
,
O.
,
Mordecai
,
S.
,
Blunn
,
G. W.
,
Tozzi
,
G.
, and
Goldberg
,
A.
,
2020
, “
Centre of Rotation of the Human Subtalar Joint Using Weight-Bearing Clinical Computed Tomography
,”
Sci. Rep.
,
10
(
1
), p.
1035
.10.1038/s41598-020-57912-z
58.
Durrant
,
M.
,
Durrant
,
L.
, and
McElroy
,
T.
,
2019
, “
Establishing a Common Instantaneous Center of Rotation for the Metatarso-Phalangeal and Metatarso-Sesamoid Joints: A Theoretical Geometric Model Based on Specific Morphometrics
,”
J. Orthop. Surg. Res.
,
14
(
1
), pp.
1
10
.10.1186/s13018-019-1110-4
59.
Telfer
,
S.
,
Kindig
,
M. W.
,
Sangeorzan
,
B. J.
, and
Ledoux
,
W. R.
,
2017
, “
Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031008
.10.1115/1.4035077
You do not currently have access to this content.