Abstract

Body armor is used to protect the human from penetrating injuries, however, in the process of defeating a projectile, the back face of the armor can deform into the wearer at extremely high rates. This deformation can cause a variety of soft and hard tissue injuries. Finite element modeling (FEM) represents one of the best tools to predict injuries from this high-rate compression mechanism. However, the validity of a model is reliant on accurate material properties for biological tissues. In this study, we measured the stress–strain response of thoraco-abdominal tissue during high-rate compression (1000 and 1900 s−1) using a split Hopkinson pressure bar (SHPB). High-rate material properties of porcine adipose, heart, spleen, and stomach tissue were characterized. At a strain rate of 1000 s−1, adipose (E = 4.7 MPa) had the most compliant stress–strain response, followed by spleen (E = 9.6 MPa), and then heart tissue (E = 13.6 MPa). At a strain rate of 1900 s−1, adipose (E = 7.3 MPa) had the most compliant stress–strain response, followed by spleen (E = 10.7 MPa), heart (E = 14.1 MPa), and stomach (E = 32.6 MPa) tissue. Only adipose tissue demonstrated a consistent rate dependence for these high strain rates, with a stiffer response at 1900 s−1 compared to 1000 s−1. However, comparison of all these tissues to previously published quasi-static and intermediate dynamic experiments revealed a strong rate dependence with increasing stress response from quasi-static to dynamic to high strain rates. Together, these findings can be used to develop a more accurate finite element model of high-rate compression injuries.

References

1.
Cannon
,
L.
,
2001
, “
Behind Armour Blunt Trauma—An Emerging Problem
,”
J. R. Army Med. Corps
,
147
(
1
), pp.
87
96
.10.1136/jramc-147-01-09
2.
Carr
,
D. J.
,
Horsfall
,
I.
, and
Malbon
,
C.
,
2016
, “
Is Behind Armour Blunt Trauma a Real Threat to Users of Body Armour? A Systematic Review
,”
J. R. Army Med. Corps
,
162
(
1
), pp.
8
11
.10.1136/jramc-2013-000161
3.
Cronin
,
D. S.
,
Bustamante
,
M. C.
,
Barker
,
J.
,
Singh
,
D.
,
Rafaels
,
K. A.
, and
Bir
,
C.
,
2021
, “
Assessment of Thorax Finite Element Model Response for Behind Armor Blunt Trauma Impact Loading Using an Epidemiological Database
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031007
.10.1115/1.4048644
4.
Bir
,
C.
,
Lance
,
R. S.
,
Stojsih-Sherman
,
S.
, and
Cavanaugh
,
J. T.
,
2017
, “
Behind Armor Blunt Trauma: Recreation of Field Cases for the Assessment of Backface Signature Testing
,”
30th International Symposium on Ballistics
, Long Beach, CA, Sept. 11–15.10.12783/ballistics2017/16912
5.
Bass
,
C. R.
,
Salzar
,
R. S.
,
Lucas
,
S. R.
,
Davis
,
M.
,
Donnellan
,
L.
,
Folk
,
B.
,
Sanderson
,
E.
, and
Waclawik
,
S.
,
2006
, “
Injury Risk in Behind Armor Blunt Thoracic Trauma
,”
Int. J. Occup. Saf. Ergon.
,
12
(
4
), pp.
429
442
.10.1080/10803548.2006.11076702
6.
Carroll
,
A.
, and
Soderstrom
,
C.
,
1978
, “
A New Nonpenetrating Ballistic Injury
,”
Ann. Surg.
,
188
(
6
), pp.
753
757
.10.1097/00000658-197812000-00007
7.
Goldfarb
,
M. A.
,
Ciurej
,
T.
,
Weinstein
,
M.
, and
Metker
,
L. R.
,
1975
, “
A Method for Soft Body Armor Evaluation: Medical Assessment
,” Aberdeen Proving Ground, MD, Report No.
EB-TR-74073
.https://apps.dtic.mil/sti/citations/ADA005575
8.
Gryth
,
D.
,
Rocksén
,
D.
,
Persson
,
J. K. E.
,
Arborelius
,
U. P.
,
Drobin
,
D.
,
Bursell
,
J.
,
Olsson
,
L. G.
, and
Kjellström
,
T. B.
,
2007
, “
Severe Lung Contusion and Death After High-Velocity Behind-Armor Blunt Trauma: Relation to Protection Level
,”
Mil. Med.
,
172
(
10
), pp.
1110
1116
.10.7205/MILMED.172.10.1110
9.
Liden
,
E.
,
Berlin
,
R.
,
Janzon
,
B.
,
Schantz
,
B.
, and
Seeman
,
T.
,
1988
, “
Some Observations Relating to Behind-Body Armour Blunt Trauma Effects Caused by Ballistic Impact
,”
J. Trauma
,
28
(
1 Suppl
.), pp.
S145
S148
.10.1097/00005373-198801001-00029
10.
Montanarelli
,
N.
,
Hawkins
,
C. E.
,
Goldfarb
,
M. A.
, and
Ciurej
,
T.
,
1973
, “
Protective Garments for Public Officials
,” Aberdeen Proving Ground, MD, Report No.
LWL-CR-30B73
.https://apps.dtic.mil/sti/citations/ADA089163
11.
Sondén
,
A.
,
Rocksén
,
D.
,
Riddez
,
L.
,
Davidsson
,
J.
,
Persson
,
J. K.
,
Gryth
,
D.
,
Bursell
,
J.
, and
Arborelius
,
U. P.
,
2009
, “
Trauma Attenuating Backing Improves Protection Against Behind Armor Blunt Trauma
,”
J. Trauma: Inj., Infect., Crit. Care
,
67
(
6
), pp.
1191
1199
.10.1097/TA.0b013e3181a5b0e1
12.
Nsiampa
,
N.
,
Robbe
,
C.
, and
Papy
,
A.
,
2011
, “
Development of a Thorax Finite Element Model for Thoracic Injury Assessment
,”
8th European LS-DYNA Users Conference
, Strasbourg, France, May 23–24.https://www.dynalook.com/conferences/8th-european-ls-dyna-conference/session-7/Session7_Paper4.pdf
13.
Roberts
,
J. C.
,
Merkle
,
A. C.
,
Biermann
,
P. J.
,
Ward
,
E. E.
,
Carkhuff
,
B. G.
,
Cain
,
R. P.
, and
O'Connor
,
J. V.
,
2007
, “
Computational and Experimental Models of the Human Torso for Non-Penetrating Ballistic Impact
,”
J. Biomech.
,
40
(
1
), pp.
125
136
.10.1016/j.jbiomech.2005.11.003
14.
Roberts
,
J. C.
,
Ward
,
E. E.
,
Merkle
,
A. C.
, and
O'Connor
,
J. V.
,
2007
, “
Assessing Behind Armor Blunt Trauma in Accordance With the National Institute of Justice Standard for Personal Body Armor Protection Using Finite Element Modeling
,”
J. Trauma: Inj., Infect., Crit. Care
,
62
, pp.
1127
1133
.10.1097/01.ta.0000231779.99416.ee
15.
Shen
,
W.
,
Niu
,
Y.
,
Bykanova
,
L.
,
Laurence
,
P.
, and
Link
,
N.
,
2010
, “
Characterizing the Interaction Among Bullet, Body Armor, and Human and Surrogate Targets
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121001
.10.1115/1.4002699
16.
Koser
,
J.
,
Chirvi
,
S.
,
Shah
,
A.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Stemper
,
B. D.
,
2019
,
Effect of Time on the Mechanical Properties of Caprine Organ Tissue
,
56
th Annual Rocky Mountain Bioengineering Symposium, Milwaukee, WI, Apr. 12–14.
17.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Stineman
,
M. R.
,
Gennarelli
,
T. A.
,
Baisden
,
J. L.
, and
Pintar
,
F. A.
,
2007
, “
Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue
,”
J. Surg. Res.
,
139
(
2
), pp.
236
242
.10.1016/j.jss.2006.09.001
18.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Guan
,
Y.
,
Shender
,
B.
,
Paskoff
,
G.
, and
Laud
,
P.
,
2011
, “
Effects of Tissue Preservation Temperature on High Strain-Rate Material Properties of Brain
,”
J. Biomech.
,
44
(
3
), pp.
391
396
.10.1016/j.jbiomech.2010.10.024
19.
Chow
,
M. J.
, and
Zhang
,
Y.
,
2011
, “
Changes in the Mechanical and Biochemical Properties of Aortic Tissue Due to Cold Storage
,”
J. Surg. Res.
,
171
(
2
), pp.
434
442
.10.1016/j.jss.2010.04.007
20.
O'Leary
,
S. A.
,
Doyle
,
B. J.
, and
McGloughlin
,
T. M.
,
2014
, “
The Impact of Long Term Freezing on the Mechanical Properties of Porcine Aortic Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
165
173
.10.1016/j.jmbbm.2014.04.015
21.
Douglas
,
W. R.
,
1972
, “
Of Pigs and Men and Research
,”
Space Life Sci.
,
3
(
3
), pp.
226
234
.10.1007/BF00928167
22.
Soerensen
,
D. D.
, and
Pedersen
,
L. J.
,
2015
, “
Infrared Skin Temperature Measurements for Monitoring Health in Pigs: A Review
,”
Acta Vet. Scand.
,
57
(
1
), p.
5
.10.1186/s13028-015-0094-2
23.
Chatelin
,
S.
,
Oudry
,
J.
,
Périchon
,
N.
,
Sandrin
,
L.
,
Allemann
,
P.
,
Soler
,
L.
, and
Willinger
,
R.
,
2011
, “
In Vivo Liver Tissue Mechanical Properties by Transient Elastography: Comparison With Dynamic Mechanical Analysis
,”
Biorheology
,
48
(
2
), pp.
75
88
.10.3233/BIR-2011-0584
24.
Chen
,
W.
, and
Song
,
B.
,
2011
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer US
,
Boston, MA
.
25.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Sect. B
,
62
(
11
), pp.
676
700
.10.1088/0370-1301/62/11/302
26.
Bracq
,
A.
,
Haugou
,
G.
,
Delille
,
R.
,
Lauro
,
F.
,
Roth
,
S.
, and
Mauzac
,
O.
,
2017
, “
Experimental Study of the Strain Rate Dependence of a Synthetic Gel for Ballistic Blunt Trauma Assessment
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
138
147
.10.1016/j.jmbbm.2017.04.027
27.
Comley
,
K.
, and
Fleck
,
N.
,
2012
, “
The Compressive Response of Porcine Adipose Tissue From Low to High Strain Rate
,”
Int. J. Impact Eng.
,
46
, pp.
1
10
.10.1016/j.ijimpeng.2011.12.009
28.
Pervin
,
F.
,
Chen
,
W. W.
, and
Weerasooriya
,
T.
,
2011
, “
Dynamic Compressive Response of Bovine Liver Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
1
), pp.
76
84
.10.1016/j.jmbbm.2010.09.007
29.
Sanborn
,
B.
,
Nie
,
X.
,
Chen
,
W.
, and
Weerasooriya
,
T.
,
2012
, “
High Strain Rate Pure Shear and Axial Compressive Response of Porcine Lung Tissue
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011029
.10.1115/1.4007222
30.
Van Sligtenhorst
,
C.
,
Cronin
,
D. S.
, and
Wayne Brodland
,
G.
,
2006
, “
High Strain Rate Compressive Properties of Bovine Muscle Tissue Determined Using a Split Hopkinson Bar Apparatus
,”
J. Biomech.
,
39
(
10
), pp.
1852
1858
.10.1016/j.jbiomech.2005.05.015
31.
Song
,
B.
,
Chen
,
W.
,
Ge
,
Y.
, and
Weerasooriya
,
T.
,
2007
, “
Dynamic and Quasi-Static Compressive Response of Porcine Muscle
,”
J. Biomech.
,
40
(
13
), pp.
2999
3005
.10.1016/j.jbiomech.2007.02.001
32.
Song
,
B.
,
Ge
,
Y.
,
Chen
,
W. W.
, and
Weerasooriya
,
T.
,
2007
, “
Radial Inertia Effects in Kolsky Bar Testing of Extra-Soft Specimens
,”
Exp. Mech.
,
47
(
5
), pp.
659
670
.10.1007/s11340-006-9017-5
33.
Albl
,
B.
,
Haesner
,
S.
,
Streckel
,
E.
,
Renner
,
S.
,
Seeliger
,
F.
,
Wolf
,
E.
,
Wanke
,
R.
, and
Blutke
,
A.
,
2016
, “
Tissue Sampling Guides for Porcine Biomedical Models
,”
Toxicol. Pathol.
,
44
(
3
), pp.
414
420
.10.1177/0192623316631023
34.
Song
,
B.
, and
Chen
,
W.
,
2005
, “
Split Hopkinson Pressure Bar Techniques for Characterizing Soft Materials
,”
Lat. Am. J. Solids Struct.
,
2
(
2
), pp.
113
152
.https://www.lajss.org/index.php/LAJSS/article/view/73
35.
Johnson
,
B.
,
2022
, “
Strain Rate Dependency of Human and Porcine Spleen Material Properties
,”
J. Multidiscip. Eng. Sci. Technol.
,
9
(
1
), pp.
15003
15009
.https://www.researchgate.net/publication/358353329_Strain_Rate_Dependency_Of_Human_And_Porcine_Spleen_Material_Properties
36.
Nemavhola
,
F.
,
2021
, “
Study of Biaxial Mechanical Properties of the Passive Pig Heart: Material Characterisation and Categorisation of Regional Differences
,”
Int. J. Mech. Mater. Eng.
,
16
(
6
), pp.
1
14
.10.1186/s40712-021-00128-4
37.
Rosen
,
J.
,
Brown
,
J. D.
,
De
,
S.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2008
, “
Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021020
.10.1115/1.2898712
38.
Verma
,
K.
,
Mukherjee
,
S.
,
Gaur
,
P.
,
Chawla
,
A.
,
Malhotra
,
R.
, and
Lalwani
,
S.
,
2018
, “
High Strain Rate Compressive Behaviour of Human Heart
,”
Int. J. Exp. Comput. Biomech.
,
4
(
2/3
), p.
152
.10.1504/IJECB.2018.092276
39.
Cesta
,
M. F.
,
2006
, “
Normal Structure, Function, and Histology of the Spleen
,”
Toxicol. Pathol.
,
34
(
5
), pp.
455
465
.10.1080/01926230600867743
40.
Chawla
,
A.
,
Mukherjee
,
S.
,
Marathe
,
R.
,
Karthikeyan
,
B.
, and
Malhotra
,
R.
,
2006
, “
Determining Strain Rate Dependence of Human Body Soft Tissues Using a Split Hopkinson Pressure Bar
,”
2006 International IRCOBI Conference on the Biomechanics of Impact
, Madrid, Spain, Sept. 20–22, pp.
173
182
.http://www.ircobi.org/wordpress/downloads/irc0111/2006/Session3/31.pdf
You do not currently have access to this content.