Abstract

Delivery of drug formulations through the subcutaneous route is a widely used modality for the treatment of several diseases, such as diabetes and auto-immune conditions. Subcutaneous injections are typically used to inject low-viscosity drugs in small doses. However, for new biologics, there is a need to deliver drugs of higher viscosity in large volumes. The response of subcutaneous tissue to such high-volume doses and higher viscosity injections is not well understood. Animal models have several drawbacks such as relevance to humans, lack of predictive power beyond the immediate population studied, cost, and ethical considerations. Therefore, a computational framework that can predict the tissue response to subcutaneous injections would be a valuable tool in the design and development of new devices. To model subcutaneous drug delivery accurately, one needs to consider: (a) the deformation and damage mechanics of skin layers due to needle penetration and (b) the coupled fluid flow and deformation of the hypodermis tissue due to drug delivery. The deformation of the skin is described by the anisotropic, hyper-elastic, and viscoelastic constitutive laws. The damage mechanics is modeled by using appropriate damage criteria and damage evolution laws in the modeling framework. The deformation of the subcutaneous space due to fluid flow is described by the poro-hyperelastic theory. The objective of this review is to provide a comprehensive overview of the methodologies used to model each of the above-mentioned aspects of subcutaneous drug delivery. We also present an overview of the experimental techniques used to obtain various model parameters.

References

1.
Lenhard
,
M. J.
, and
Reeves
,
G. D.
,
2001
, “
Continuous Subcutaneous Insulin Infusion: A Comprehensive Review of Insulin Pump Therapy
,”
Arch. Internal Med.
,
161
(
19
), pp.
2293
2300
.10.1001/archinte.161.19.2293
2.
Wright
,
J. M.
, and
Jones
,
G. B.
,
2017
, “
Developing the Subcutaneous Drug Delivery Route
,”
Med. Res. Arch.
,
5
(
12
), pp.
1
12
.https://esmed.org/MRA/mra/article/view/1652
3.
Jones
,
G. B.
,
Collins
,
D. S.
,
Harrison
,
M. W.
,
Thyagarajapuram
,
N. R.
, and
Wright
,
J. M.
,
2017
, “
Subcutaneous Drug Delivery: An Evolving Enterprise
,”
Sci. Transl. Med.
,
9
(
405
), p.
eaaf9166
.10.1126/scitranslmed.aaf9166
4.
Heinemann
,
L.
,
Weyer
,
C.
,
Rauhaus
,
M.
,
Heinrichs
,
S.
, and
Heise
,
T.
,
1998
, “
Variability of the metabolic Effect of Soluble Insulin and the Rapid-Acting Insulin Analog Insulin Aspart
,”
Diabetes Care
,
21
(
11
), pp.
1910
1914
.10.2337/diacare.21.11.1910
5.
Kim
,
H.
,
Park
,
H.
, and
Lee
,
S. J.
,
2017
, “
Effective Method for Drug Injection Into Subcutaneous Tissue
,”
Sci. Rep.
,
7
(
1
), pp.
1
11
.10.1038/s41598-017-10110-w
6.
Heinemann
,
L.
,
2002
, “
Variability of Insulin Absorption and Insulin Action
,”
Diabetes Technol. Ther.
,
4
(
5
), pp.
673
682
.10.1089/152091502320798312
7.
Zaybak
,
A.
, and
Khorshid
,
L.
,
2008
, “
A Study on the Effect of the Duration of Subcutaneous Heparin Injection on Bruising and Pain
,”
J. Clin. Nurs.
,
17
(
3
), pp.
378
385
.10.1111/j.1365-2702.2006.01933.x
8.
Shi
,
G. H.
,
Pisupati
,
K.
,
Parker
,
J. G.
,
Corvari
,
V. J.
,
Payne
,
C. D.
,
Xu
,
W.
,
Collins
,
D. S.
, and
De Felippis
,
M. R.
,
2021
, “
Subcutaneous Injection Site Pain of Formulation Matrices
,”
Pharm. Res.
,
38
(
5
), pp.
779
793
.10.1007/s11095-021-03047-3
9.
Berteau
,
C.
,
Filipe-Santos
,
O.
,
Wang
,
T.
,
Rojas
,
H. E.
,
Granger
,
C.
, and
Schwarzenbach
,
F.
,
2015
, “
Evaluation of the Impact of Viscosity, Injection Volume, and Injection Flow Rate on Subcutaneous Injection Tolerance
,”
Med. Dev. (Auckland, NZ)
,
8
, p.
473
.10.2147/MDER.S91019
10.
Mathy
,
F. X.
,
Denet
,
A. R.
,
Vroman
,
B.
,
Clarys
,
P.
,
Barel
,
A.
,
Verbeeck
,
R. K.
, and
Préat
,
V.
,
2003
, “
In Vivo Tolerance Assessment of Skin After Insertion of Subcutaneous and Cutaneous Microdialysis Probes in the Rat
,”
Skin Pharmacol. Physiol.
,
16
(
1
), pp.
18
27
.10.1159/000068290
11.
Thomsen
,
M.
,
Poulsen
,
M.
,
Bech
,
M.
,
Velroyen
,
A.
,
Herzen
,
J.
,
Beckmann
,
F.
,
Feidenhans
,
R.
, and
Pfeiffer
,
F.
,
2012
, “
Visualization of Subcutaneous Insulin Injections by X-Ray Computed Tomography
,”
Phys. Med. Biol.
,
57
(
21
), pp.
7191
7203
.10.1088/0031-9155/57/21/7191
12.
Hofman
,
P. L.
,
Derraik
,
J. G. B.
,
Pinto
,
T. E.
,
Tregurtha
,
S.
,
Faherty
,
A.
,
Peart
,
J. M.
,
Drury
,
P. L.
,
Robinson
,
E.
,
Tehranchi
,
R.
,
Donsmark
,
M.
, and
Cutfield
,
W. S.
,
2010
, “
Defining the Ideal Injection Techniques When Using 5-mm Needles in Children and Adults
,”
Diabetes Care
,
33
(
9
), pp.
1940
1944
.10.2337/dc10-0871
13.
Mone
,
G.
,
2014
, “
New Models in Cosmetics Replacing Animal Testing
,”
Commun. ACM
,
57
(
4
), pp.
20
21
.10.1145/2581925
14.
Flynn
,
C.
, and
McCormack
,
B. A.
,
2008
, “
Finite Element Modelling of Forearm Skin Wrinkling
,”
Skin Res. Technol.
,
14
(
3
), pp.
261
269
.10.1111/j.1600-0846.2008.00289.x
15.
Kong
,
X. Q.
,
Zhou
,
P.
, and
Wu
,
C. W.
,
2011
, “
Numerical Simulation of Microneedles' Insertion Into Skin
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
827
835
.10.1080/10255842.2010.497144
16.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2004
, “
Mechanisms of Deep Penetration of Soft Solids, With Application to the Injection and Wounding of Skin
,”
Proc. R. Soc. London. Ser. A
,
460
(
2050
), pp.
3037
3058
.10.1098/rspa.2004.1315
17.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
838
848
.10.1115/1.1992528
18.
Thomsen
,
M.
,
Hernandez-Garcia
,
A.
,
Mathiesen
,
J.
,
Poulsen
,
M.
,
Sørensen
,
D. N.
,
Tarnow
,
L.
, and
Feidenhans'l
,
R.
,
2014
, “
Model Study of the Pressure Build-Up During Subcutaneous Injection
,”
PLoS One
,
9
(
8
), p.
e104054
.10.1371/journal.pone.0104054
19.
McGrath
,
J. A.
,
Eady
,
R. A. J.
, and
Pope
,
F. M.
,
2004
, “
Anatomy and Organization of Human Skin
,”
Rook's Textbook Dermatology
, Vol.
1
, Blackwell Publishing, Inc., Malden, MA, pp.
3
2
.http://www.blackwellpublishing.com/content/bpl_images/content_store/sample_chapter/0632064293/dermchap3.pdf
20.
Benson
,
H. A.
, and
Watkinson
,
A. C.
eds.,
2012
,
Topical and Transdermal Drug Delivery: Principles and Practice
,
Wiley
, Hoboken, NJ.
21.
Joodaki
,
H.
, and
Panzer
,
M. B.
,
2018
, “
Skin Mechanical Properties and Modeling: A Review
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
4
), pp.
323
343
.10.1177/0954411918759801
22.
Yousef
,
H.
,
Alhajj
,
M.
, and
Sharma
,
S.
,
2021
, “
Anatomy, Skin (Integument), Epidermis
,”
StatPearls
,
StatPearls Publishing
,
Treasure Island, FL
.
23.
Nemes
,
Z.
, and
Steinert
,
P. M.
,
1999
, “
Bricks and Mortar of the Epidermal Barrier
,”
Exp. Mol. Med.
,
31
(
1
), pp.
5
19
.10.1038/emm.1999.2
24.
Santoprete
,
R.
, and
Querleux
,
B.
,
2014
, “
Cellular-Scale Mechanical Model of the Human Stratum Corneum
,” B. Querleux, ed., Computational Biophysics of the Skin, Chapter 6, Pan Stanford Publishing, Singapore, pp.
161
183
.
25.
Geerligs
,
M.
,
2010
,
Skin Layer Mechanics
,
TU Eindhoven
,
Eindhoven, The Netherlands
.
26.
Hendriks
,
F. M.
,
Brokken
,
D.
,
Oomens
,
C. W. J.
,
Bader
,
D. L.
, and
Baaijens
,
F. P. T.
,
2006
, “
The Relative Contributions of Different Skin Layers to the Mechanical Behavior of Human Skin In Vivo Using Suction Experiments
,”
Med. Eng. Phys.
,
28
(
3
), pp.
259
266
.10.1016/j.medengphy.2005.07.001
27.
Hendriks
,
F. M.
,
Brokken
,
D. V.
,
Van Eemeren
,
J.
,
Oomens
,
C. W. J.
,
Baaijens
,
F. P. T.
, and
Horsten
,
J.
,
2003
, “
A Numerical‐Experimental Method to Characterize the Non‐Linear Mechanical Behaviour of Human Skin
,”
Skin Res. Technol.
,
9
(
3
), pp.
274
283
.10.1034/j.1600-0846.2003.00019.x
28.
Annaidh
,
A. N.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.10.1016/j.jmbbm.2011.08.016
29.
Jansen
,
L. H.
, and
Rottier
,
P. B.
,
1958
, “
Some Mechanical Properties of Human Abdominal Skin Measured on Excised Strips
,”
Dermatology
,
117
(
2
), pp.
65
83
.10.1159/000255569
30.
Delalleau
,
A.
,
Josse
,
G.
,
Lagarde
,
J. M.
,
Zahouani
,
H.
, and
Bergheau
,
J. M.
,
2008
, “
A Nonlinear Elastic Behavior to Identify the Mechanical Parameters of Human Skin In Vivo
,”
Skin Res. Technol.
,
14
(
2
), pp.
152
164
.10.1111/j.1600-0846.2007.00269.x
31.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1
), pp.
1
48
.https://link.springer.com/article/10.1023/A:1010835316564
32.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
33.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
34.
Aldieri
,
A.
,
Terzini
,
M.
,
Bignardi
,
C.
,
Zanetti
,
E. M.
, and
Audenino
,
A. L.
,
2018
, “
Implementation and Validation of Constitutive Relations for Human Dermis Mechanical Response
,”
Med. Biol. Eng. Comput.
,
56
(
11
), pp.
2083
2093
.10.1007/s11517-018-1843-y
35.
Collins
,
D. S.
,
Kourtis
,
L. C.
,
Thyagarajapuram
,
N. R.
,
Sirkar
,
R.
,
Kapur
,
S.
,
Harrison
,
M. W.
,
Bryan
,
D. J.
,
Jones
,
G. B.
, and
Wright
,
J. M.
,
2017
, “
Optimizing the Bioavailability of Subcutaneously Administered Biotherapeutics Through Mechanochemical Drivers
,”
Pharm. Res.
,
34
(
10
), pp.
2000
2011
.10.1007/s11095-017-2229-9
36.
Oltulu
,
P.
,
Ince
,
B.
,
Kokbudak
,
N.
,
Findik
,
S.
, and
Kilinc
,
F.
,
2018
, “
Measurement of Epidermis, Dermis, and Total Skin Thicknesses From Six Different Body Regions With a New Ethical Histometric Technique
,”
Turk. J. Plast. Surg.
,
26
(
2
), p.
56
.10.4103/tjps.TJPS_2_17
37.
Akkus
,
O.
,
Oguz
,
A.
,
Uzunlulu
,
M.
, and
Kizilgul
,
M.
,
2012
, “
Evaluation of Skin and Subcutaneous Adipose Tissue Thickness for Optimal Insulin Injection
,”
J. Diabetes Metab.
,
3
(
8
), p.
2
.10.4172/2155-6156.1000216
38.
Coelho
,
M.
,
Oliveira
,
T.
, and
Fernandes
,
R.
,
2013
, “
Biochemistry of Adipose Tissue: An Endocrine Organ
,”
Arch. Med. Sci.
,
9
(
2
), pp.
191
200
.10.5114/aoms.2013.33181
39.
Geerligs
,
M.
,
Peters
,
G. W.
,
Ackermans
,
P. A.
,
Oomens
,
C. W.
, and
Baaijens
,
F.
,
2008
, “
Linear Viscoelastic Behavior of Subcutaneous Adipose Tissue
,”
Biorheology
,
45
(
6
), pp.
677
688
.10.3233/BIR-2008-0517
40.
Skobe
,
M.
, and
Detmar
,
M.
,
2000
, “
Structure, Function, and Molecular Control of the Skin Lymphatic System
,”
J. Invest. Dermatol. Symp. Proc.
,
5
(
1
), pp.
14
19
.10.1046/j.1087-0024.2000.00001.x
41.
Fathallah
,
A. M.
,
Turner
,
M. R.
,
Mager
,
D. E.
, and
Balu‐Iyer
,
S. V.
,
2015
, “
Effects of Hypertonic Buffer Composition on Lymph Node Uptake and Bioavailability of Rituximab, After Subcutaneous Administration
,”
Biopharm. Drug Dispos.
,
36
(
2
), pp.
115
125
.10.1002/bdd.1925
42.
Comley
,
K.
, and
Fleck
,
N. A.
,
2010
, “
A Micromechanical Model for the Young's Modulus of Adipose Tissue
,”
Int. J. Solids Struct.
,
47
(
21
), pp.
2982
2990
.10.1016/j.ijsolstr.2010.07.001
43.
Sommer
,
G.
,
Eder
,
M.
,
Kovacs
,
L.
,
Pathak
,
H.
,
Bonitz
,
L.
,
Mueller
,
C.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2013
, “
Multiaxial Mechanical Properties and Constitutive Modeling of Human Adipose Tissue: A Basis for Preoperative Simulations in Plastic and Reconstructive Surgery
,”
Acta Biomater.
,
9
(
11
), pp.
9036
9048
.10.1016/j.actbio.2013.06.011
44.
Fung
,
Y. C.
,
1972
, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,” Y. C. Fung, N. Perrone, and M. Anliker, eds.,
Biomechanics: Its Foundations and Objectives
, Chapter 7, Prentice Hall, Inc., Englewood Cliffs, NJ, pp.
181
208
.https://eurekamag.com/research/027/448/027448814.php
45.
Flynn
,
C.
, and
McCormack
,
B. A.
,
2010
, “
Simulating the Wrinkling and Aging of Skin With a Multi-Layer Finite Element Model
,”
J. Biomech.
,
43
(
3
), pp.
442
448
.10.1016/j.jbiomech.2009.10.007
46.
Comley
,
K.
, and
Fleck
,
N. A.
,
2010
, “
The Toughness of Adipose Tissue: Measurements and Physical Basis
,”
J. Biomech.
,
43
(
9
), pp.
1823
1826
.10.1016/j.jbiomech.2010.02.029
47.
Groves
,
R. B.
,
Coulman
,
S. A.
,
Birchall
,
J. C.
, and
Evans
,
S. L.
,
2013
, “
An Anisotropic, Hyperelastic Model for Skin: Experimental Measurements, Finite Element Modelling and Identification of Parameters for Human and Murine Skin
,”
J. J. Mech. Behav. Biomed. Mater.
,
18
, pp.
167
180
.10.1016/j.jmbbm.2012.10.021
48.
Khatyr
,
F.
,
Imberdis
,
C.
,
Vescovo
,
P.
,
Varchon
,
D.
, and
Lagarde
,
J. M.
,
2004
, “
Model of the Viscoelastic Behaviour of Skin In Vivo and Study of Anisotropy
,”
Skin Res. Technol.
,
10
(
2
), pp.
96
103
.10.1111/j.1600-0846.2004.00057.x
49.
Jayabal
,
H.
,
Dingari
,
N. N.
, and
Rai
,
B.
,
2019
, “
A Linear Viscoelastic Model to Understand Skin Mechanical Behaviour and for Cosmetic Formulation Design
,”
Int. J. Cosmet. Sci.
,
41
(
3
), pp.
292
299
.10.1111/ics.12535
50.
Piérard
,
G. E.
, and
Lapière
,
C. M.
,
1987
, “
Microanatomy of the Dermis in Relation to Relaxed Skin Tension Lines and Langer's Lines
,”
Am. J. Dermatopathol.
,
9
(
3
), pp.
219
224
.10.1097/00000372-198706000-00007
51.
Gibson
,
T.
,
Stark
,
H.
, and
Evans
,
J. H.
,
1969
, “
Directional Variation in Extensibility of Human Skin In Vivo
,”
J. Biomech.
,
2
(
2
), pp.
201
204
.10.1016/0021-9290(69)90032-3
52.
Azar
,
T.
, and
Hayward
,
V.
,
2008
, “
Estimation of the Fracture Toughness of Soft Tissue From Needle Insertion
,”
International Symposium on Biomedical Simulation
, July 7–8,
Springer
,
Berlin, Heidelberg
, pp.
166
175
.
53.
Gokgol
,
C.
,
Basdogan
,
C.
, and
Canadinc
,
D.
,
2012
, “
Estimation of Fracture Toughness of Liver Tissue: Experiments and Validation
,”
Med. Eng. Phys.
,
34
(
7
), pp.
882
891
.10.1016/j.medengphy.2011.09.030
54.
Terzano
,
M.
,
Dini
,
D.
,
Rodriguez y Baena
,
F.
,
Spagnoli
,
A.
, and
Oldfield
,
M.
,
2020
, “
An Adaptive Finite Element Model for Steerable Needles
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1809
1825
.10.1007/s10237-020-01310-x
55.
Takabi
,
B.
, and
Tai
,
B. L.
,
2017
, “
A Review of Cutting Mechanics and Modeling Techniques for Biological Materials
,”
Med. Eng. Phys.
,
45
, pp.
1
14
.10.1016/j.medengphy.2017.04.004
56.
Oldfield
,
M.
,
Dini
,
D.
,
Giordano
,
G.
, and
Rodriguez y Baena
,
F.
,
2013
, “
Detailed Finite Element Modelling of Deep Needle Insertions Into a Soft Tissue Phantom Using a Cohesive Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
5
), pp.
530
543
.10.1080/10255842.2011.628448
57.
Li
,
W.
,
2016
, “
Damage Models for Soft Tissues: A Survey
,”
J. Medical Biol. Eng.
,
36
(
3
), pp.
285
307
.10.1007/s40846-016-0132-1
58.
Halabian
,
M.
,
Beigzadeh
,
B.
,
Karimi
,
A.
,
Shirazi
,
H. A.
, and
Shaali
,
M. H.
,
2016
, “
A Combination of Experimental and Finite Element Analyses of Needle–Tissue Interaction to Compute the Stresses and Deformations During Injection at Different Angles
,”
J. Clin. Monit. Comput.
,
30
(
6
), pp.
965
975
.10.1007/s10877-015-9801-9
59.
Amiri
,
Y.
, and
Vahidi
,
B.
,
2019
, “
Three Dimensional Simulation of the Microneedle Penetration Process in the Skin by Finite Element Method
,” 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (
ICBME
), Tehran, Iran, Nov. 27–28,
IEEE
, pp.
70
74
.10.1109/ICBME49163.2019.9030385
60.
Chanthasopeephan
,
T.
,
Desai
,
J. P.
, and
Lau
,
A. C.
,
2007
, “
Modeling Soft-Tissue Deformation Prior to Cutting for Surgical Simulation: Finite Element Analysis and Study of Cutting Parameters
,”
IEEE Trans. Biomed. Eng.
,
54
(
3
), pp.
349
359
.10.1109/TBME.2006.886937
61.
Taleghani
,
A. D.
,
Gonzalez-Chavez
,
M.
,
Yu
,
H.
, and
Asala
,
H.
,
2018
, “
Numerical Simulation of Hydraulic Fracture Propagation in Naturally Fractured Formations Using the Cohesive Zone Model
,”
J. Pet. Sci. Eng.
,
165
, pp.
42
57
.10.1016/j.petrol.2018.01.063
62.
Zielonka
,
M. G.
,
Searles
,
K. H.
,
Ning
,
J.
, and
Buechler
,
S. R.
,
2014
, “
Development and Validation of Fully-Coupled Hydraulic Fracturing Simulation Capabilities
,”
SIMULIA Community Conference
, Providence RI, May, pp.
1
12
.https://www.ssanalysis.co.uk/hsfs/hub/419567/file-2455661560-pdf/KB_Papers/Hydraulic_Fracturing_Simulation.pdf
63.
Altun
,
İ.
,
2018
, “
May the z-Tracking Technique to Prevent Any Leakage in Insulin Injection Be an Alternative to the 10-Second Waiting Technique?
,”
J. Diabetes Sci. Technol.
,
12
(
2
), pp.
537
538
.10.1177/1932296817730378
64.
Præstmark
,
K. A.
,
Stallknecht
,
B.
,
Jensen
,
M. L.
,
Sparre
,
T.
,
Madsen
,
N. B.
, and
Kildegaard
,
J.
,
2016
, “
Injection Technique and Pen Needle Design Affect Leakage From Skin After Subcutaneous Injections
,”
J. Diabetes Sci. Technol.
,
10
(
4
), pp.
914
922
.10.1177/1932296815626723
65.
Shahriar
,
M.
,
Rewanwar
,
A.
,
Rohilla
,
P.
, and
Marston
,
J.
,
2021
, “
Understanding the Effect of Counterpressure Buildup During Syringe Injections
,”
Int. J. Pharm.
,
602
, p.
120530
.10.1016/j.ijpharm.2021.120530
66.
Selvadurai
,
A. P. S.
, and
Suvorov
,
A. P.
,
2016
, “
Coupled Hydro-Mechanical Effects in a Poro-Hyperelastic Material
,”
J. Mech. Phys. Solids
,
91
, pp.
311
333
.10.1016/j.jmps.2016.03.005
67.
MacMinn
,
C. W.
,
Dufresne
,
E. R.
, and
Wettlaufer
,
J. S.
,
2016
, “
Large Deformations of a Soft Porous Material
,”
Phys. Rev. Appl.
,
5
(
4
), p.
044020
.10.1103/PhysRevApplied.5.044020
68.
Oftadeh
,
R.
,
Connizzo
,
B. K.
,
Nia
,
H. T.
,
Ortiz
,
C.
, and
Grodzinsky
,
A. J.
,
2018
, “
Biological Connective Tissues Exhibit Viscoelastic and Poroelastic Behavior at Different Frequency Regimes: Application to Tendon and Skin Biophysics
,”
Acta Biomater.
,
70
, pp.
249
259
.10.1016/j.actbio.2018.01.041
69.
Siddique
,
J. I.
,
Ahmed
,
A.
,
Aziz
,
A.
, and
Khalique
,
C. M.
,
2017
, “
A Review of Mixture Theory for Deformable Porous Media and Applications
,”
Appl. Sci.
,
7
(
9
), p.
917
.10.3390/app7090917
70.
Comley
,
K.
, and
Fleck
,
N.
,
2012
, “
The Compressive Response of Porcine Adipose Tissue From Low to High Strain Rate
,”
Int. J. Imp. Eng.
, 46, pp.
1
10
.10.1016/j.ijimpeng.2011.12.009
71.
Vande Geest
,
J. P.
,
Simon
,
B. R.
,
Rigby
,
P. H.
, and
Newberg
,
T. P.
,
2011
, “
Coupled Porohyperelastic Mass Transport (PHEXPT) Finite Element Models for Soft Tissues Using ABAQUS
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
044502
.10.1115/1.4003489
72.
Leng
,
Y.
,
de Lucio
,
M.
, and
Gomez
,
H.
,
2021
, “
Using Poro-Elasticity to Model the Large Deformation of Tissue During Subcutaneous Injection
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113919
.10.1016/j.cma.2021.113919
73.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
,
1998
, “
Porohyperelastic Finite Element Analysis of Large Arteries Using ABAQUS
,”
ASME J. Biomech. Eng.
120
(
2
), pp.
296
298
.10.1115/1.2798315
74.
Feenstra
,
P. H.
, and
Taylor
,
C. A.
,
2009
, “
Drug Transport in Artery Walls: A Sequential Porohyperelastic-Transport Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
3
), pp.
263
276
.10.1080/10255840802459396
75.
Ní Annaidh
,
A.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Maurini
,
C.
,
Otténio
,
M.
, and
Saccomandi
,
G.
,
2012
, “
Automated Estimation of Collagen Fibre Dispersion in the Dermis and Its Contribution to the Anisotropic Behaviour of Skin
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1666
1678
.10.1007/s10439-012-0542-3
76.
Wu
,
J. Z.
,
Cutlip
,
R. G.
,
Andrew
,
M. E.
, and
Dong
,
R. G.
,
2007
, “
Simultaneous Determination of the Nonlinear‐Elastic Properties of Skin and Subcutaneous Tissue in Unconfined Compression Tests
,”
Skin Res. Technol.
,
13
(
1
), pp.
34
42
.10.1111/j.1600-0846.2007.00182.x
77.
Iivarinen
,
J. T.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
, and
Jurvelin
,
J. S.
,
2011
, “
Experimental and Computational Analysis of Soft Tissue Stiffness in Forearm Using a Manual Indentation Device
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1245
1253
.10.1016/j.medengphy.2011.05.015
78.
Escoffier
,
C.
,
de Rigal
,
J.
,
Rochefort
,
A.
,
Vasselet
,
R.
,
Lévêque
,
J.-L.
, and
Agache
,
P. G.
,
1989
, “
Age-Related Mechanical Properties of Human Skin: An In Vivo Study
,”
J. Invest. Dermatol.
,
93
(
3
), pp.
353
357
.10.1016/0022-202X(89)90058-4
79.
Diridollou
,
S.
,
Vabre
,
V.
,
Berson
,
M.
,
Vaillant
,
L.
,
Black
,
D.
,
Lagarde
,
J. M.
,
Grégoire
,
J. M.
,
Gall
,
Y.
, and
Patat
,
F.
,
2001
, “
Skin Ageing: Changes of Physical Properties of Human Skin In Vivo
,”
Int. J. Cosmetic Sci.
,
23
(
6
), pp.
353
362
.10.1046/j.0412-5463.2001.00105.x
80.
Terzini
,
M.
,
Aldieri
,
A.
,
Bignardi
,
C.
,
Zanetti
,
E. M.
, and
Audenino
,
A. L.
,
2017
, “
Equi-Biaxial Tests for Mechanical Characterization of Human Acellular Dermal Matrices Through a Custom-Made Biaxial Fixture
,”
WIT Trans. Eng. Sci.
,
116
, pp.
391
400
.10.2495/MC170401
81.
Gahagnon
,
S.
,
Mofid
,
Y.
,
Josse
,
G.
, and
Ossant
,
F.
,
2012
, “
Skin Anisotropy In Vivo and Initial Natural Stress Effect: A Quantitative Study Using High-Frequency Static Elastography
,”
J. Biomech.
,
45
(
16
), pp.
2860
2865
.10.1016/j.jbiomech.2012.08.032
82.
Jor
,
J. W.
,
Nash
,
M. P.
,
Nielsen
,
P. M.
, and
Hunter
,
P. J.
,
2011
, “
Estimating Material Parameters of a Structurally Based Constitutive Relation for Skin Mechanics
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
767
778
.10.1007/s10237-010-0272-0
83.
Calvo-Gallego
,
J. L.
,
Domínguez
,
J.
,
Cía
,
T. G.
,
Ciriza
,
G. G.
, and
Martínez-Reina
,
J.
,
2018
, “
Comparison of Different Constitutive Models to Characterize the Viscoelastic Properties of Human Abdominal Adipose Tissue. A Pilot Study
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
293
302
.10.1016/j.jmbbm.2018.02.013
84.
Miller-Young
,
J. E.
,
Duncan
,
N. A.
, and
Baroud
,
G.
,
2002
, “
Material Properties of the Human Calcaneal Fat Pad in Compression: Experiment and Theory
,”
J. Biomech.
,
35
(
12
), pp.
1523
1531
.10.1016/S0021-9290(02)00090-8
85.
Samani
,
A.
, and
Plewes
,
D.
,
2004
, “
A Method to Measure the Hyperelastic Parameters of Ex Vivo Breast Tissue Samples
,”
Phys. Med. Biol.
,
49
(
18
), pp.
4395
4405
.10.1088/0031-9155/49/18/014
86.
Pereira
,
B. P.
,
Lucas
,
P. W.
, and
Swee-Hin
,
T.
,
1997
, “
Ranking the Fracture Toughness of Thin Mammalian Soft Tissues Using the Scissors Cutting Test
,”
J. Biomech.
,
30
(
1
), pp.
91
94
.10.1016/S0021-9290(96)00101-7
87.
Taylor
,
D.
,
O'Mara
,
N.
,
Ryan
,
E.
,
Takaza
,
M.
, and
Simms
,
C.
,
2012
, “
The Fracture Toughness of Soft Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
6
, pp.
139
147
.10.1016/j.jmbbm.2011.09.018
88.
Purslow
,
P. P.
,
1983
, “
Measurement of the Fracture Toughness of Extensible Connective Tissues
,”
J. Mater. Sci.
, 18(
12
), pp.
3591
3598
.10.1007/BF00540731
89.
Oomens
,
C. W. J.
,
Van Campen
,
D. H.
,
Grootenboer
,
H. J.
, and
De Boer
,
L. J.
,
1985
, “
Experimental and Theoretical Compression Studies on Porcine Skin
,”
Biomechanics: Current Interdisciplinary Research
,
Springer
, Dordrecht, The Netherlands, pp.
227
232
.10.1007/978-94-011-7432-9_29
90.
Oomens
,
C. W. J.
,
Van Campen
,
D. H.
, and
Grootenboer
,
H. J.
,
1987
, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
,
20
(
9
), pp.
877
885
.10.1016/0021-9290(87)90147-3
91.
Shrestha
,
P.
, and
Stoeber
,
B.
,
2020
, “
Imaging Fluid Injections Into Soft Biological Tissue to Extract Permeability Model Parameters
,”
Phys. Fluids
,
32
(
1
), p.
011905
.10.1063/1.5131488
You do not currently have access to this content.