Abstract

The Newtonian model has commonly been used to represent the viscosity of blood in the aorta, despite blood itself being a non-Newtonian fluid. This is justified where shear rates tend to be large. However, we hypothesized that using the Newtonian model to predict the hemodynamics on the aortic valve, particularly in those with severe calcifications, is inaccurate owing to valve leaflet geometry irregularities inducing multiple regions of low shear rates, <100 s−1, where a Newtonian model is invalid. We investigated the utility of three fluid viscosity models via quasi-static simulations: Newtonian, Carreau, and Quemada on a severely calcified aortic heart valve and compared their ability to capture important hemodynamic parameters of wall shear stress (WSS) and the oscillatory shear index (OSI). Our findings indicate that when the shear rates were large enough, >100 s−1, the use of a Newtonian model was justified. However, in spatial regions of relatively low shear rates, <100 s−1, specifically on the inner cusps of the fibrosa side of the valve, WSS calculations under a Newtonian model were found to be noticeably different when compared with their non-Newtonian, Carreau and Quemada counterparts. We hereby conclude that to facilitate more accurate computational flow simulations in severe aortic heart valve calcification, which is subjected to relatively large spatial regions of low shear (<100 s−1), a non-Newtonian model should be applied.

References

1.
Fåhræus
,
R.
, and
Lindqvist
,
T.
,
1931
, “
The Viscosity of the Blood in Narrow Capillary Tubes
,”
Am. J. Physiol. Legacy Content
,
96
(
3
), pp.
562
568
.10.1152/ajplegacy.1931.96.3.562
2.
Berger
,
S. A.
, and
Jou
,
L.-D.
,
2000
, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
347
382
.10.1146/annurev.fluid.32.1.347
3.
Saxena
,
A.
,
Saha
,
V.
, and
Ng
,
E. Y. K.
,
2020
, “
Skin Temperature Maps as a Measure of Carotid Artery Stenosis
,”
Comput. Biol. Med.
,
116
, p.
103548
.10.1016/j.compbiomed.2019.103548
4.
Hayashi
,
H.
, and
Yamaguchi
,
T.
,
2002
, “
A Simple Computational Model of the Right Coronary Artery on the Beating Heart – Effects of the Temporal Change of Curvature and Torsion on the Blood Flow
,”
Biorheology
,
39
(
3–4
), pp.
395
399
.https://content.iospress.com/articles/biorheology/bir233
5.
Mapara
,
N.
,
MacLean
,
N. F.
,
Steinman
,
D. A.
,
Holdsworth
,
D. W.
, and
Roach
,
M. R.
,
1995
, “
Numerical Simulations of Flow in Flared Sections of the Human Infrarenal Aorta
,”
Proceedings of the Fourteenth Southern Biomedical Engineering Conference
, Shreveport, LA, Apr. 7–9, pp.
34
37
.10.1109/SBEC.1995.514423
6.
Su
,
B.
,
Kabinejadian
,
F.
,
Huo
,
Y.
,
Kassab
,
G.
,
Leo
,
H. L.
, and
Zhong
,
L.
, “
Hemodynamics Simulation in the Left Anterior Descending Coronary Artery Tree
,”
Computational and Mathematical Methods in Cardiovascular Physiology
, World Scientific Publishing Co Pte Ltd, Singapore, pp.
257
281
.10.1142/9789813270640_0010
7.
Koksungnoen
,
S.
,
Rattanadecho
,
P.
, and
Wongchadakul
,
P.
,
2018
, “
3D Numerical Model of Blood Flow in the Coronary Artery Bypass Graft During No Pulse and Pulse Situations: Effects of an Anastomotic Angle and Characteristics of Fluid
,”
J. Mech. Sci. Technol.
,
32
(
9
), pp.
4545
4552
.10.1007/s12206-018-0851-z
8.
Suzuki
,
T.
,
Takao
,
H.
,
Suzuki
,
T.
,
Suzuki
,
T.
,
Masuda
,
S.
,
Dahmani
,
C.
,
Watanabe
,
M.
,
Mamori
,
H.
,
Ishibashi
,
T.
,
Yamamoto
,
H.
,
Yamamoto
,
M.
, and
Murayama
,
Y.
,
2017
, “
Variability of Hemodynamic Parameters Using the Common Viscosity Assumption in a Computational Fluid Dynamics Analysis of Intracranial Aneurysms.
,”
Technol. Health Care
,
25
(
1
), pp.
37
47
.10.3233/THC-161245
9.
Mahrous
,
S.
,
Che Sidik
.,
N. A.
, and
Saqr
,
K. M.
,
2021
, “
Newtonian and Non-Newtonian CFD Models of Intracranial Aneurysm: A Review.
,”
CFD Lett.
,
12
(
1
), pp.
62
86
.https://www.akademiabaru.com/submit/index.php/cfdl/article/view/3131
10.
Chua
,
C.
,
Sheard
,
G.
,
Ryan
,
K.
, and
Fouras
,
A.
,
2009
, “
Changes in Flow and Wall Stresses Through Arterial Constrictions Offset From the Centre of the Vessel
,”
Anziam J.
,
50
, pp.
744
759
.10.21914/anziamj.v50i0.1459
11.
Augst
,
A. D.
,
Ariff
,
B.
,
Thom
,
S.
,
Xu
,
X. Y.
, and
Hughes
,
A. D.
,
2007
, “
Analysis of Complex Flow and the Relationship Between Blood Pressure, Wall Shear Stress, and Intima-Media Thickness in the Human Carotid Artery
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
2
), pp.
H1031
H1037
.10.1152/ajpheart.00989.2006
12.
Abbasian
,
M.
,
Shams
,
M.
,
Valizadeh
,
Z.
,
Moshfegh
,
A.
,
Javadzadegan
,
A.
, and
Cheng
,
S.
,
2020
, “
Effects of Different Non-Newtonian Models on Unsteady Blood Flow Hemodynamics in Patient-Specific Arterial Models With In-Vivo Validation
,”
Comput. Methods Prog. Biomed.
,
186
, p.
105185
.10.1016/j.cmpb.2019.105185
13.
Gharaie
,
S. H.
,
Mosadegh
,
B.
, and
Morsi
,
Y.
,
2017
, “
Towards Computational Prediction of Flow-Induced Damage of Blood Cells Using a Time-Accumulated Model
,”
J. Biomech. Sci. Eng.
,
12
(
4
), p.
17
.10.1299/jbse.17-00168
14.
Tango
,
A. M.
,
Ducci
,
A.
, and
Burriesci
,
G.
,
2021
, “
In Silico Study of the Ageing Effect Upon Aortic Valves
,”
J. Fluids Struct.
,
103
, p.
103258
.10.1016/j.jfluidstructs.2021.103258
15.
Soifer
,
E.
,
Weiss
,
D.
,
Marom
,
G.
, and
Einav
,
S.
,
2017
, “
The Effect of Pathologic Venous Valve on Neighboring Valves: Fluid–Structure Interactions Modeling
,”
Med. Biol. Eng. Comput.
,
55
(
6
), pp.
991
999
.10.1007/s11517-016-1575-9
16.
Manchester
,
E. L.
,
Pirola
,
S.
,
Salmasi
,
M. Y.
,
O'Regan
,
D. P.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2021
, “
Analysis of Turbulence Effects in a Patient-Specific Aorta With Aortic Valve Stenosis
,”
Cardiovasc. Eng. Technol.
,
12
(
4
), pp.
438
453
.10.1007/s13239-021-00536-9
17.
Milleron
,
O.
,
Arnoult
,
F.
,
Ropers
,
J.
,
Aegerter
,
P.
,
Detaint
,
D.
,
Delorme
,
G.
,
Attias
,
D.
,
Tubach
,
F.
,
Dupuis-Girod
,
S.
,
Plauchu
,
H.
,
Barthelet
,
M.
,
Sassolas
,
F.
,
Pangaud
,
N.
,
Naudion
,
S.
,
Thomas-Chabaneix
,
J.
,
Dulac
,
Y.
,
Edouard
,
T.
,
Wolf
,
J. E.
,
Faivre
,
L.
,
Odent
,
S.
,
Basquin
,
A.
,
Habib
,
G.
,
Collignon
,
P.
,
Boileau
,
C.
, and
Jondeau
,
G.
,
2015
, “
Marfan Sartan: A Randomized, Double-Blind, Placebo-Controlled Trial
,”
Eur. Heart J.
,
36
(
32
), pp.
2160
2166
.10.1093/eurheartj/ehv151
18.
Sakariassen
,
K. S.
,
Orning
,
L.
, and
Turitto
,
V. T.
,
2015
, “
The Impact of Blood Shear Rate on Arterial Thrombus Formation
,”
Future Sci. OA
,
1
(
4
), p.
FSO30
.10.4155/fso.15.28
19.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
20.
Morris
,
P. D.
,
Narracott
,
A.
,
von Tengg-Kobligk
,
H.
,
Silva Soto
,
D. A.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.10.1136/heartjnl-2015-308044
21.
Back
,
M.
,
Gasser
,
T. C.
,
Michel
,
J. B.
, and
Caligiuri
,
G.
,
2013
, “
Biomechanical Factors in the Biology of Aortic Wall and Aortic Valve Diseases
,”
Cardiovasc. Res.
,
99
(
2
), pp.
232
241
.10.1093/cvr/cvt040
22.
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2010
, “
Direction and Magnitude of Blood Flow Shear Stresses on the Leaflets of Aortic Valves: Is There a Link With Valve Calcification?
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
014505
.10.1115/1.4000162
23.
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2007
, “
Heart Valve Function: A Biomechanical Perspective
,”
Philos. Trans. R. Soc. London B Biol. Sci.
,
362
(
1484
), pp.
1369
1391
.10.1098/rstb.2007.2122
24.
Cao
,
K.
,
BukaČ
,
M.
, and
Sucosky
,
P.
,
2016
, “
Three-Dimensional Macro-Scale Assessment of Regional and Temporal Wall Shear Stress Characteristics on Aortic Valve Leaflets
,”
Comput Methods Biomech. Biomed. Eng.
,
19
(
6
), pp.
603
613
.10.1080/10255842.2015.1052419
25.
Sturla
,
F.
,
Votta
,
E.
,
Stevanella
,
M.
,
Conti
,
C. A.
, and
Redaelli
,
A.
,
2013
, “
Impact of Modeling Fluid–Structure Interaction in the Computational Analysis of Aortic Root Biomechanics
,”
Med. Eng. Phys.
,
35
(
12
), pp.
1721
1730
.10.1016/j.medengphy.2013.07.015
26.
Cao
,
K.
, and
Sucosky
,
P.
,
2017
, “
Computational Comparison of Regional Stress and Deformation Characteristics in Tricuspid and Bicuspid Aortic Valve Leaflets
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
3
), pp.
1
21
.10.1002/cnm.2798
27.
Demer
,
L. L.
, and
Tintut
,
Y.
,
2008
, “
Vascular Calcification: Pathobiology of a Multifaceted Disease
,”
Circulation
,
117
(
22
), pp.
2938
–29
48
.10.1161/CIRCULATIONAHA.107.743161
28.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
,
1994
, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
,
27
(
2
), pp.
195
204
.10.1016/0021-9290(94)90209-7
29.
Lewandowska
,
N.
, and
Mosiężny
,
J.
,
2019
, “
Meshing Strategy for Bifurcation Arteries in the Context of Blood Flow Simulation Accuracy.
,”
E3S Web Conf.
,
128
, p.
02003
.10.1051/e3sconf/201912802003
30.
Otto
,
C. M.
, and
Prendergast
,
B.
,
2014
, “
Aortic-Valve Stenosis — From Patients at Risk to Severe Valve Obstruction
,”
New Engl. J. Med.
,
371
(
8
), pp.
744
756
.10.1056/NEJMra1313875
31.
Sirois
,
E.
,
Mao
,
W.
,
Li
,
K.
,
Calderan
,
J.
, and
Sun
,
W.
,
2018
, “
Simulated Transcatheter Aortic Valve Flow: Implications of Elliptical Deployment and Under-Expansion at the Aortic Annulus
,”
Artif Organs
,
42
(
7
), pp.
E141
E152
.10.1111/aor.13107
32.
Prahl Wittberg
,
L.
,
van Wyk
,
S.
,
Fuchs
,
L.
,
Gutmark
,
E.
,
Backeljauw
,
P.
, and
Gutmark-Little
,
I.
,
2016
, “
Effects of Aortic Irregularities on Blood Flow
,”
Biomech. Model Mechanobiol.
,
15
(
2
), pp.
345
360
.10.1007/s10237-015-0692-y
33.
Sirois
,
E.
, and
Sun
,
W.
,
2011
, “
Computational Evaluation of Platelet Activation Induced by a Bioprosthetic Heart Valve
,”
Artif Organs
,
35
(
2
), pp.
157
165
.10.1111/j.1525-1594.2010.01048.x
34.
Salman
,
H. E.
,
Saltik
,
L.
, and
Yalcin
,
H. C.
,
2021
, “
Computational Analysis of Wall Shear Stress Patterns on Calcified and Bicuspid Aortic Valves: Focus on Radial and Coaptation Patterns
,”
Fluids
,
6
(
8
), p.
287
.10.3390/fluids6080287
35.
Perinajova
,
R.
,
Juffermans
,
J. F.
,
Mercado
,
J. L.
,
Aben
,
J. P.
,
Ledoux
,
L.
,
Westenberg
,
J. J. M.
,
Lamb
,
H. J.
, and
Kenjeres
,
S.
,
2021
, “
Assessment of Turbulent Blood Flow and Wall Shear Stress in Aortic Coarctation Using Image-Based Simulations
,”
Biomed. Eng. Online
,
20
(
1
), p.
84
.10.1186/s12938-021-00921-4
36.
Amindari
,
A.
,
Saltik
,
L.
,
Kirkkopru
,
K.
,
Yacoub
,
M.
, and
Yalcin
,
H. C.
,
2017
, “
Assessment of Calcified Aortic Valve Leaflet Deformations and Blood Flow Dynamics Using Fluid-Structure Interaction Modeling
,”
Inf. Med. Unlocked
,
9
, pp.
191
199
.10.1016/j.imu.2017.09.001
37.
Cherry
,
E. M.
, and
Eaton
,
J. K.
,
2013
, “
Shear Thinning Effects on Blood Flow in Straight and Curved Tubes
,”
Phys. Fluids
,
25
(
7
), p.
073104
.10.1063/1.4816369
38.
Brooks
,
D. E.
,
Goodwin
,
J. W.
, and
Seaman
,
G. V.
,
1970
, “
Interactions Among Erythrocytes Under Shear
,”
J. Appl. Physiol.
,
28
(
2
), pp.
172
177
.10.1152/jappl.1970.28.2.172
39.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
–2
62
.10.3233/BIR-1991-283-415
40.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
,
1966
, “
Effects of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
,
21
(
1
), pp.
81
87
.10.1152/jappl.1966.21.1.81
41.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,” ASME
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
42.
Xing
,
R.
,
Moerman
,
A. M.
,
Ridwan
,
Y.
,
Daemen
,
M. J.
,
van der Steen
,
A. F. W.
,
Gijsen
,
F. J. H.
, and
van der Heiden
,
K.
,
2018
, “
Temporal and Spatial Changes in Wall Shear Stress During Atherosclerotic Plaque Progression in Mice
,”
R. Soc. Open Sci.
,
5
(
3
), p.
171447
.10.1098/rsos.171447
43.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
44.
Yamamoto
,
E.
,
Thondapu
,
V.
,
Poon
,
E.
,
Sugiyama
,
T.
,
Fracassi
,
F.
,
Dijkstra
,
J.
,
Lee
,
H.
,
Ooi
,
A.
,
Barlis
,
P.
, and
Jang
,
I. K.
,
2019
, “
Endothelial Shear Stress and Plaque Erosion: A Computational Fluid Dynamics and Optical Coherence Tomography Study
,”
JACC Cardiovasc. Imaging
,
12
(
2
), pp.
374
375
.10.1016/j.jcmg.2018.07.024
45.
Yap
,
C. H.
,
Saikrishnan
,
N.
,
Tamilselvan
,
G.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental Measurement of Dynamic Fluid Shear Stress on the Aortic Surface of the Aortic Valve Leaflet
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
171
82
.10.1007/s10237-011-0301-7
46.
Marcinkowska-Gapińska
,
A.
,
Gapinski
,
J.
,
Elikowski
,
W.
,
Jaroszyk
,
F.
, and
Kubisz
,
L.
,
2007
, “
Comparison of Three Rheological Models of Shear Flow Behavior Studied on Blood Samples From Post-Infarction Patients
,”
Med. Biol. Eng. Comput.
,
45
(
9
), pp.
837
844
.10.1007/s11517-007-0236-4
47.
Saqr
,
K. M.
,
2020
, “
Computational Fluid Dynamics Simulations of Cerebral Aneurysm Using Newtonian, Power-Law and Quasi-Mechanistic Blood Viscosity Models
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
234
(
7
), pp.
711
719
.10.1177/0954411920917531
48.
Johnson
,
E. L.
,
Wu
,
M. C. H.
,
Xu
,
F.
,
Wiese
,
N. M.
,
Rajanna
,
M. R.
,
Herrema
,
A. J.
,
Ganapathysubramanian
,
B.
,
Hughes
,
T. J. R.
,
Sacks
,
M. S.
, and
Hsu
,
M.-C.
,
2020
, “
Thinner Biological Tissues Induce Leaflet Flutter in Aortic Heart Valve Replacements
,”
Proc. Natl. Acad. Sci.
,
117
(
32
), pp.
19007
19016
.10.1073/pnas.2002821117
49.
Emendi
,
M.
,
Sturla
,
F.
,
Ghosh
,
R. P.
,
Bianchi
,
M.
,
Piatti
,
F.
,
Pluchinotta
,
F. R.
,
Giese
,
D.
,
Lombardi
,
M.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2021
, “
Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach
,”
Ann. Biomed. Eng.
,
49
(
2
), pp.
627
641
.10.1007/s10439-020-02571-4
50.
Govindarajan
,
V.
,
Kolanjiyil
,
A.
,
Johnson
,
N. P.
,
Kim
,
H.
,
Chandran
,
K. B.
, and
McPherson
,
D. D.
,
2022
, “
Improving Transcatheter Aortic Valve Interventional Predictability Via Fluid-Structure Interaction Modelling Using Patient-Specific Anatomy
,”
R. Soc. Open Sci.
,
9
(
2
), p.
211694
.10.1098/rsos.211694
You do not currently have access to this content.