Synthetic polyurethane foams are frequently used in biomechanical testing of spinal medical devices. However, it is unclear what types of foam are most representative of human vertebral trabecular bone behavior, particularly for testing the bone–implant interface. Therefore, a study was conducted to compare polyurethane foam microstructure and screw pullout properties to human vertebrae. Cadaveric thoracolumbar vertebrae underwent microcomputed tomography to assess trabecular bone microstructure. Spine plate screws were implanted into the vertebral body and pullout testing was performed. The same procedure was followed for eight different densities (grades 5–30) of commercially available closed cell (CCF) and open cell foams (OCF). The results indicated that foam microstructural parameters such as volume fraction, strut thickness, strut spacing, and material density rarely matched that of trabecular bone. However, certain foams provided mechanical properties that were comparable to the cadavers tested. Pullout force and work to pullout for screws implanted into CCF grade 5 were similar to osteoporotic female cadavers. In addition, screw pullout forces and work to pullout in CCF grade 8, grade 10, and OCF grade 30 were similar to osteopenic male cadavers. All other OCF and CCF foams possessed pullout properties that were either significantly lower or higher than the cadavers tested. This study elucidated the types and densities of polyurethane foams that can represent screw pullout strength in human vertebral bone. Synthetic bone surrogates used for biomechanical testing should be selected based on bone quantity and quality of patients who may undergo device implantation.

References

1.
Szivek
,
J.
,
Thomas
,
M.
, and
Benjamin
,
J.
,
1993
, “
Technical Note. Characterization of a Synthetic Foam as a Model for Human Cancellous Bone
,”
J. Appl. Biomater.
,
4
(
3
), pp.
269
272
.
2.
Szivek
,
J. A.
,
Thompson
,
J. D.
, and
Benjamin
,
J. B.
,
1995
, “
Characterization of Three Formulations of a Synthetic Foam as Models for a Range of Human Cancellous Bone Types
,”
J. Appl. Biomater.
,
6
(
2
), pp.
125
128
.
3.
Hein
,
T.
,
Hotchkiss
,
R.
,
Perissinotto
,
A.
, and
Chao
,
E.
,
1986
, “
Analysis of Bone Model Material for External Fracture Fixation Experiments
,”
Biomed. Sci. Instrum.
,
23
, pp.
43
48
.
4.
Johnson
,
A. E.
, and
Keller
,
T. S.
,
2008
, “
Mechanical Properties of Open-Cell Foam Synthetic Thoracic Vertebrae
,”
J. Mater. Sci. Mater. Med.
,
19
(
3
), pp.
1317
1323
.
5.
Calvert
,
K. L.
,
Trumble
,
K. P.
,
Webster
,
T. J.
, and
Kirkpatrick
,
L. A.
,
2010
, “
Characterization of Commercial Rigid Polyurethane Foams Used as Bone Analogs for Implant Testing
,”
J. Mater. Sci. Mater. Med.
,
21
(
5
), pp.
1453
1461
.
6.
Thompson
,
J. D.
,
Benjamin
,
J. B.
, and
Szivek
,
J. A.
,
1997
, “
Pullout Strengths of Cannulated and Noncannulated Cancellous Bone Screws
,”
Clin. Orthop. Relat. Res.
,
341
, pp.
241
249
.
7.
ASTM
,
2012
, “
Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments
,” ASTM International, West Conshohocken, PA, Standard No. ASTM F1839-08(2012).
8.
Linde
,
F.
,
Hvid
,
I.
, and
Pongsoipetch
,
B.
,
1989
, “
Energy Absorptive Properties of Human Trabecular Bone Specimens During Axial Compression
,”
J. Orthop. Res.
,
7
(
3
), pp.
432
439
.
9.
Linde
,
F.
, and
Hvid
,
I.
,
1989
, “
The Effect of Constraint on the Mechanical Behaviour of Trabecular Bone Specimens
,”
J. Biomech.
,
22
(
5
), pp.
485
490
.
10.
Lotz
,
J. C.
,
Gerhart
,
T. N.
, and
Hayes
,
W. C.
,
1990
, “
Mechanical Properties of Trabecular Bone From the Proximal Femur: A Quantitative CT Study
,”
J. Comput. Assist. Tomogr.
,
14
(
1
), pp.
107
114
.
11.
Mosekilde
,
L.
,
Mosekilde
,
L.
, and
Danielsen
,
C.
,
1987
, “
Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Density and Age in Normal Individuals
,”
Bone
,
8
(
2
), pp.
79
85
.
12.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.
13.
Patel
,
P. S.
,
Shepherd
,
D. E.
, and
Hukins
,
D. W.
,
2010
, “
The Effect of Screw Insertion Angle and Thread Type on the Pullout Strength of Bone Screws in Normal and Osteoporotic Cancellous Bone Models
,”
Med. Eng. Phys.
,
32
(
8
), pp.
822
828
.
14.
Krenn
,
M. H.
,
Piotrowski
,
W. P.
,
Penzkofer
,
R.
, and
Augat
,
P.
,
2008
, “
Influence of Thread Design on Pedicle Screw Fixation
,”
J. Neurosurg. Spine
,
9
(
1
), pp.
90
95
.
15.
Chapman
,
J.
,
Harrington
,
R.
,
Lee
,
K.
,
Anderson
,
P.
,
Tencer
,
A.
, and
Kowalski
,
D.
,
1996
, “
Factors Affecting the Pullout Strength of Cancellous Bone Screws
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
391
398
.
16.
Caglar
,
Y. S.
,
Torun
,
F.
,
Pait
,
T. G.
,
Hogue
,
W.
,
Bozkurt
,
M.
, and
Özgen
,
S.
,
2005
, “
Biomechanical Comparison of Inside–Outside Screws, Cables, and Regular Screws, Using a Sawbone Model
,”
Neurosurg. Rev.
,
28
(
1
), pp.
53
58
.
17.
Poukalova
,
M.
,
Yakacki
,
C. M.
,
Guldberg
,
R. E.
,
Lin
,
A.
,
Gillogly
,
S. D.
, and
Gall
,
K.
,
2010
, “
Pullout Strength of Suture Anchors: Effect of Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
43
(
6
), pp.
1138
1145
.
18.
Yakacki
,
C. M.
,
Poukalova
,
M.
,
Guldberg
,
R. E.
,
Lin
,
A.
,
Gillogly
,
S.
, and
Gall
,
K.
,
2010
, “
The Effect of the Trabecular Microstructure on the Pullout Strength of Suture Anchors
,”
J. Biomech.
,
43
(
10
), pp.
1953
1959
.
19.
Mosekilde
,
L.
, and
Mosekilde
,
L.
,
1986
, “
Normal Vertebral Body Size and Compressive Strength: Relations to Age and to Vertebral and Iliac Trabecular Bone Compressive Strength
,”
Bone
,
7
(
3
), pp.
207
212
.
20.
Cook
,
S. D.
,
Salkeld
,
S. L.
,
Stanley
,
T.
,
Faciane
,
A.
, and
Miller
,
S. D.
,
2004
, “
Biomechanical Study of Pedicle Screw Fixation in Severely Osteoporotic Bone
,”
Spine J.
,
4
(
4
), pp.
402
408
.
21.
Inceoglu
,
S.
,
Ferrara
,
L.
, and
McLain
,
R. F.
,
2004
, “
Pedicle Screw Fixation Strength: Pullout Versus Insertional Torque
,”
Spine J.
,
4
(
5
), pp.
513
518
.
22.
Ryken
,
T. C.
,
Clausen
,
J. D.
,
Traynelis
,
V. C.
, and
Goel
,
V. K.
,
1995
, “
Biomechanical Analysis of Bone Mineral Density, Insertion Technique, Screw Torque, and Holding Strength of Anterior Cervical Plate Screws
,”
J. Neurosurg.
,
83
(
2
), pp.
324
329
.
23.
Chen
,
L.-H.
,
Tai
,
C.-L.
,
Lai
,
P.-L.
,
Lee
,
D.-M.
,
Tsai
,
T.-T.
,
Fu
,
T.-S.
,
Niu
,
C.-C.
, and
Chen
,
W.-J.
,
2009
, “
Pullout Strength for Cannulated Pedicle Screws With Bone Cement Augmentation in Severely Osteoporotic Bone: Influences of Radial Hole and Pilot Hole Tapping
,”
Clin. Biomech.
,
24
(
8
), pp.
613
618
.
24.
Edwards
,
W. T.
,
Zheng
,
Y.
,
Ferrara
,
L. A.
, and
Yuan
,
H. A.
,
2001
, “
Structural Features and Thickness of the Vertebral Cortex in the Thoracolumbar Spine
,”
Spine
,
26
(
2
), pp.
218
225
.
25.
Hildebrand
,
T.
, and
Ruegsegger
,
P.
,
1997
, “
A New Method for the Model-Independent Assessment of Thickness in Three-Dimensional Images
,”
J. Microsc. Oxford
,
185
(
1
), pp.
67
75
.
26.
Hildebrand
,
T.
,
Laib
,
A.
,
Muller
,
R.
,
Dequeker
,
J.
, and
Ruegsegger
,
P.
,
1999
, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data From Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
,
14
(
7
), pp.
1167
1174
.
27.
Nagaraja
,
S.
,
Awada
,
H. K.
,
Dreher
,
M. L.
,
Gupta
,
S.
, and
Miller
,
S. W.
,
2013
, “
Vertebroplasty Increases Compression of Adjacent IVDs and Vertebrae in Osteoporotic Spines
,”
Spine J.
,
13
(
12
), pp.
1872
1880
.
28.
Battula
,
S.
,
Schoenfeld
,
A. J.
,
Sahai
,
V.
,
Vrabec
,
G. A.
,
Tank
,
J.
, and
Njus
,
G. O.
,
2008
, “
The Effect of Pilot Hole Size on the Insertion Torque and Pullout Strength of Self-Tapping Cortical Bone Screws in Osteoporotic Bone
,”
J. Trauma Acute Care Surg.
,
64
(
4
), pp.
990
995
.
29.
Nagaraja
,
S.
,
Palepu
,
V.
,
Peck
,
J. H.
, and
Helgeson
,
M. D.
,
2015
, “
Impact of Screw Location and Endplate Preparation on Pullout Strength for Anterior Plates and Integrated Fixation Cages
,”
Spine J.
,
15
(
11
), pp.
2425
2432
.
You do not currently have access to this content.