Light energy from a laser source that is delivered into body tissue via a fiber-optic probe with minimal invasiveness has been used to ablate solid tumors. This thermal coagulation process can be guided and monitored accurately by continuous magnetic resonance imaging (MRI) since the laser energy delivery system does not interfere with MRI. This report deals with mathematical modeling and analysis of laser coagulation of tissue. This model is intended for “real-time” analysis of magnetic resonance images obtained during the coagulation process to guide clinical treatment. A mathematical model is developed to simulate the thermal response of tissue to a laser light heating source. For fast simulation, an approximate solution of the thermal model is used to predict the dynamics of temperature distribution and tissue damage induced by a laser energy line source. The validity of these simulations is tested by comparison with MRI-based temperature data acquired from in vivo experiments in rabbits. The model-simulated temperature distribution and predicted lesion dynamics correspond closely with MRI-based data. These results demonstrate the potential for using this combination of fast modeling and MRI technologies during laser heating of tissue for online prediction of tumor lesion size during laser heating.

1.
Dick
,
E. A.
,
Joarder
,
R.
,
de Jode
,
M.
,
Taylor-Robinson
,
S. D.
,
Thomas
,
H. C.
,
Foster
,
G. R.
, and
Gedroyc
,
W. M.
, 2003, “
MR-Guided Laser Thermal Ablation of Primary and Secondary Liver Tumours
,”
Clin. Radiol.
0009-9260,
58
, pp.
112
120
.
2.
Pacella
,
C. M.
,
Bizzarri
,
G.
,
Cecconi
,
P.
,
Caspani
,
B.
,
Magnolfi
,
F.
,
Bianchini
,
A.
,
Anelli
,
V.
,
Pacella
,
S.
, and
Rossi
,
Z.
, 2001, “
Hepatocellular Carcinoma: Long-Term Results of Combined Treatment With Laser Thermal Ablation and Transcatheter Arterial Chemoembolization
,”
Radiology
0033-8419,
219
, pp.
669
678
.
3.
Schwarzmaier
,
H. J.
,
Yaroslavsky
,
I. V.
,
Yaroslavsky
,
A. N.
,
Fiedler
,
V.
,
Ulrich
,
F.
, and
Kahn
,
T.
, 1998, “
Treatment Planning for MRI-Guided Laser-Induced Interstitial Thermotherapy of Brain Tumors—The Role of Blood Perfusion
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
121
127
.
4.
Viard
,
R.
,
Emptaz
,
A.
,
Piron
,
B.
,
Rochon
,
P.
,
Wassmer
,
B.
, and
Mordon
,
S.
, 2007, “
Determination of the Lesion Size in Laser-Induced Interstitial Thermal Therapy (LITT) Using a Low-Field MRI
.”
Proceedings of the 2007 IEEE Conference on Engineering in Medicine and Biology Society
, pp.
214
217
.
5.
Puls
,
R.
,
Stroszczynski
,
C.
,
Rosenberg
,
C.
,
Kuehn
,
J. P.
,
Hegenscheid
,
K.
,
Speck
,
U.
,
Stier
,
A.
, and
Hosten
,
N.
, 2007, “
Three-Dimensional Gradient-Echo Imaging for Percutaneous MR-Guided Laser Therapy of Liver Metastasis
,”
J. Magn. Reson Imaging
1053-1807,
25
, pp.
1174
1178
.
6.
Botnar
,
R. M.
,
Steiner
,
P.
,
Dubno
,
B.
,
Erhart
,
P.
,
von Schulthess
,
G. K.
, and
Debatin
,
J. F.
, 2001, “
Temperature Quantification Using the Proton Frequency Shift Technique: In Vitro and In Vivo Validation in an Open 0.5 Tesla Interventional MR Scanner During RF Ablation
,”
J. Magn. Reson Imaging
1053-1807,
13
, pp.
437
444
.
7.
Chen
,
L.
,
Wansapura
,
J. P.
,
Heit
,
G.
, and
Butts
,
K.
, 2002, “
Study of Laser Ablation in the In Vivo Rabbit Brain With MR Thermometry
,”
J. Magn. Reson Imaging
1053-1807,
16
, pp.
147
152
.
8.
Chung
,
Y. C.
,
Duerk
,
J. L.
,
Shankaranarayanan
,
A.
,
Hampke
,
M.
,
Merkle
,
E. M.
, and
Lewin
,
J. S.
, 1999, “
Temperature Measurement Using Echo-Shifted FLASH at Low Field for Interventional MRI
,”
J. Magn. Reson Imaging
1053-1807,
9
, pp.
138
145
.
9.
Peters
,
R. D.
,
Hinks
,
R. S.
, and
Henkelman
,
R. M.
, 1999, “
Heat-Source Orientation and Geometry Dependence in Proton-Resonance Frequency Shift Magnetic Resonance Thermometry
,”
Magn. Reson. Med.
0740-3194,
41
, pp.
909
918
.
10.
Vogel
,
M. W.
,
Pattynama
,
P. M.
,
Lethimonnier
,
F. L.
, and
Le Roux
,
P.
, 2003, “
Use of Fast Spin Echo for Phase Shift Magnetic Resonance Thermometry
,”
J. Magn. Reson. Imaging
,
18
, pp.
507
512
.
11.
Breen
,
M. S.
,
Breen
,
M.
,
Butts
,
K.
,
Chen
,
L.
,
Saidel
,
G. M.
, and
Wilson
,
D. L.
, 2007, “
MRI-Guided Thermal Ablation Therapy: Model and Parameter Estimates to Predict Cell Death From MR Thermometry Images
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
1391
1403
.
12.
Chen
,
X.
,
Barkauskas
,
K. J.
,
Nour
,
S. G.
,
Duerk
,
J. L.
,
Abdul-Karim
,
F. W.
, and
Saidel
,
G. M.
, 2007, “
Magnetic Resonance Imaging and Model Prediction for Thermal Ablation of Tissue
,”
J. Magn. Reson Imaging
1053-1807,
26
, pp.
123
132
.
13.
Chen
,
X.
,
Barkauskas
,
K. J.
,
Weinberg
,
B. D.
,
Duerk
,
J. L.
,
Abdul-Karim
,
F. W.
,
Paul
,
S.
, and
Saidel
,
G. M.
, 2008, “
Dynamics of MRI-Guided Thermal Ablation of VX2 Tumor in Paraspinal Muscle of Rabbits
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
, pp.
1004
1014
.
14.
Chen
,
X.
, and
Saidel
,
G. M.
, 2009, “
Mathematical Modeling of Thermal Ablation in Tissue Surrounding a Large Vessel
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
1
), p.
011001
.
15.
Afanasiev
,
Y. V. C. B.
,
Demchenko
,
N. N.
,
Isakov
,
V. A.
, and
Zavestovskaya
,
I. N.
, 1999, “
Ablation of Metals by Ultrashort Laser Pulses: Theoretical Modeling and Computer Simulations
,”
J. Russ. Laser Res.
1071-2836,
20
, pp.
89
115
.
16.
Iizuka
,
M. N.
,
Vitkin
,
I. A.
,
Kolios
,
M. C.
, and
Sherar
,
M. D.
, 2000, “
The Effects of Dynamic Optical Properties During Interstitial Laser Photocoagulation
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1335
1357
.
17.
Sentrayan
,
K.
,
Thorpe
,
A.
, and
Trouth
,
C. O.
, 1998, “
Non-Thermal Laser Ablation Model for Micro-Surgical Applications
,”
Spectrosc. Lett.
0038-7010,
31
, pp.
559
572
.
18.
Whiting
,
P. D. J.
,
Kapadia
,
P. D.
, and
Davis
,
M. P.
, 1992, “
A One-Dimensional Mathematical Model of Laser-Induced Thermal Ablation of Biological Tissue
,”
Lasers Med. Sci.
0268-8921,
7
, pp.
357
368
.
19.
Welch
,
A. J.
, 1984, “
The Thermal Response of Laser Irradiated Tissue
,”
IEEE J. Quantum Electron.
0018-9197,
20
, pp.
1471
1481
.
20.
Doiron
,
D. R.
,
Svaasand
,
L. O.
, and
Proflo
,
A. E.
, 1983, “
Light Dosimetry in Tissue: Application to Photoradiation Therapy
,” in
Porphyrin Photosensitization (Advances in Experimental Medicine and Biology)
, Vol.
160
, pp.
63
67
.
21.
Johnson
,
P. C.
, and
Saidel
,
G. M.
, 2002, “
Thermal Model for Fast Simulation During Magnetic Resonance Imaging Guidance of Radio Frequency Tumor Ablation
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
1152
1161
.
22.
Hindmarsh
,
A. C.
, 1983, “
ODEPACK, A Systematized Collection of ODE Solvers
,”
IMACS Transactions on Scientific Computation
,
North-Holland
,
Amsterdam
, Vol.
1
, pp.
55
64
.
You do not currently have access to this content.