Biomechanical investigations of orthopedic fracture fixation constructs increasingly use analogs like the third and fourth generation composite femurs. However, no study has directly compared cortical screw purchase between these surrogates and human femurs, which was the present aim. Synthetic and human femurs had bicortical orthopedic screws (diameter=3.5mm and length=50mm) inserted in three locations along the anterior length. The screws were extracted to obtain pullout force, shear stress, and energy-to-pullout. The four study groups (n=6 femurs each) assessed were the fourth generation composite femur with both 16 mm and 20 mm diameter canals, the third generation composite femur with a 16 mm canal, and the human femur. For a given femur type, there was no statistical difference between the proximal, center, or distal screw sites for virtually all comparisons. The fourth generation composite femur with a 20 mm canal was closest to the human femur for the outcome measures considered. Synthetic femurs showed a range of average measures (2948.54–5286.30 N, 27.30–35.60 MPa, and 3.63–9.95 J) above that for human femurs (1645.92–3084.95 N, 17.86–24.64 MPa, and 1.82–3.27 J). Shear stress and energy-to-pullout were useful supplemental evaluators of screw purchase, since they account for material properties and screw motion. Although synthetic femurs approximated human femurs with respect to screw extraction behavior, ongoing research is required to definitively determine which type of synthetic femur most closely resembles normal, osteopenic, or osteoporotic human bone at the screw-bone interface.

1.
Tencer
,
A. F.
, and
Johnson
,
K. D.
, 1994, “
Lower Extremity Fixation
,”
Biomechanics in Orthopedic Trauma
,
JB Lippincott
,
Philadelphia, PA
, pp.
249
274
.
2.
Ogden
,
W. S.
, and
Rendall
,
J.
, 1978, “
Fractures Beneath Hip Prostheses: A Special Indication for Parham Bands and Plating
,”
Orthop Trans
,
2
, p.
70
.
3.
Althausen
,
P. L.
,
Lee
,
M. A.
,
Finkemeier
,
C. G.
,
Meehan
,
J. P.
, and
Rodrigo
,
J. J.
, 2003, “
Operative Stabilization of Supracondylar Femur Fractures Above Total Knee Arthroplasty: A Comparison of Four Treatment Methods
,”
J. Arthroplasty
0883-5403,
18
, pp.
834
839
.
4.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
, 2000, “
Fixation of Periprosthetic Femoral Shaft Fractures Occurring at the Tip of the Stem: A Biomechanical Study of 5 Techniques
,”
J. Arthroplasty
0883-5403,
15
(
4
), pp.
523
528
.
5.
Emerson
,
R. H.
, Jr.
,
Malinin
,
T. I.
,
Cuellar
,
A. D.
,
Head
,
W. C.
, and
Peters
,
P. C.
, 1992, “
Cortical Strut Allografts in the Reconstruction of the Femur in Revision Total Hip Arthroplasty. A Basic Science and Clinical Study
,”
Clin. Orthop. Relat. Res.
0009-921X,
285
, pp.
35
44
.
6.
Fulkerson
,
E.
,
Egol
,
K.
,
Preston
,
C.
,
Iesaka
,
K.
,
Kummer
,
F.
, and
Koval
,
K.
, 2004, “
Fixation of Periprosthetic Femoral Shaft Fractures: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates (Ogden Construct)
,”
Proceedings of the Orthopaedic Trauma Association 20th Annual Meeting
, Oct. 8–10, Hollywood, FL.
7.
Kelley
,
S. S.
, 1994, “
Periprosthetic Femoral Fractures
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
2
, pp.
164
172
.
8.
Alho
,
A.
, 1997, “
Concurrent Ipsilateral Fractures of the Hip and Shaft of the Femur: A Systematic Review of 722 Cases
,”
Ann. Chir. Gynaecol.
0355-9521,
86
(
4
), pp.
326
336
.
9.
2001,
Rockwood and Green’s Fractures in Adults
, 5th ed.,
R. W.
Bucholz
and
J. D.
Heckman
, eds.,
Lippincott, Williams, and Wilkins
,
Philadelphia, PA
.
10.
Fulkerson
,
E.
,
Koval
,
K.
,
Preston
,
C. F.
,
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Egol
,
K. A.
, 2006, “
Fixation of Periprosthetic Femoral Shaft Fractures Associated With Cemented Femoral Stems: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates
,”
J. Orthop. Trauma
0890-5339,
20
(
2
), pp.
89
93
.
11.
Law
,
M.
,
Tencer
,
A. F.
, and
Anderson
,
P. A.
, 1993, “
Caudo-Cephalad Loading of Pedicle Screws: Mechanisms of Loosening and Methods of Augmentation
,”
Spine
0362-2436,
18
, pp.
2438
2443
.
12.
Merk
,
B. R.
,
Stern
,
S. H.
,
Cordes
,
S.
, and
Lautenschlager
,
E. P.
, 2001, “
A Fatigue Life Analysis of Small Fragment Screws
,”
J. Orthop. Trauma
0890-5339,
15
(
7
), pp.
494
499
.
13.
Ansell
,
R.
, and
Scales
,
J.
, 1968, “
A Study of Some Factors Which Affect the Strength of Screws and Their Insertion and Holding Power in Bone
,”
J. Biomech.
0021-9290,
1
(
4
), pp.
279
302
.
14.
Cheal
,
E. J.
,
Spector
,
M.
, and
Hayes
,
W. C.
, 1992, “
Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
10
, pp.
405
422
.
15.
Cusick
,
R. P.
,
Lucas
,
G. L.
,
McQueen
,
D. A.
, and
Graber
,
C. D.
, 2000, “
Construct Stiffness of Different Fixation Methods for Supracondylar Femoral Fractures Above Total Knee Prostheses
,”
Am. J. Orthop.
1078-4519,
29
(
9
), pp.
695
699
.
16.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
(
2
), pp.
93
108
.
17.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
, pp.
773
781
.
18.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2003, “
Structural Properties of an Improved Redesign of Composite Replicate Femurs and Tibias
,”
Proceedings of the 49th Annual Meeting of the Orthopaedic Research Society
, New Orleans, LA.
19.
Peindl
,
R. D.
,
Zura
,
R. D.
,
Vincent
,
A.
,
Coley
,
E. R.
,
Bosse
,
M. J.
, and
Sims
,
S. H.
, 2004, “
Unstable Proximal Extraarticular Tibia Fractures: A Biomechanical Evaluation of Four Methods of Fixation
,”
J. Orthop. Trauma
0890-5339,
18
(
8
), pp.
540
545
.
20.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2008, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
90
(
5
), pp.
1068
1077
.
21.
Pacific Research Laboratories
,
Manufacturer’s Online Product Catalog
, www.sawbones.comwww.sawbones.com
22.
Zdero
,
R.
,
Rose
,
S.
,
Schemitsch
,
E. H.
, and
Papini
,
M.
, 2007, “
Cortical Screw Pullout Strength and Effective Shear Stress in Synthetic Third Generation Composite Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
289
293
.
23.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
24.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
0021-9290,
33
(
3
), pp.
279
288
.
25.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
12
19
.
26.
Lochmüller
,
E. M.
,
Krefting
,
N.
,
Burklein
,
D.
, and
Eckstein
,
F.
, 2001, “
Effect of Fixation, Soft-Tissues, and Scan Projection on Bone Mineral Measurements With Dual X-Ray Absorptiometry (DXA)
,”
Calcif. Tissue Int.
0171-967X,
68
, pp.
140
145
.
27.
Edmondston
,
S. J.
,
Singer
,
K. P.
,
Day
,
R. E.
,
Breidahl
,
P. D.
, and
Price
,
R. I.
, 1994, “
In Vitro Relationships Between Vertebral Body Density, Size, and Compressive Strength in the Elderly Thoracolumbar Spine
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
9
, pp.
180
186
.
28.
Seebeck
,
J.
,
Goldhahn
,
J.
,
Morlock
,
M. M.
, and
Schneider
,
E.
, 2005, “
Mechanical Behavior of Screws in Normal and Osteoporotic Bone
,”
Osteoporosis Int.
0937-941X,
16
, pp.
S107
S111
.
29.
Zdero
,
R.
,
Olsen
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
, 2008, “
Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
8
), pp.
1175
1183
.
30.
Zdero
,
R.
, and
Schemitsch
,
E. H.
, 2009, “
The Effect of Screw Pullout Rate on Screw Purchase in Synthetic Cancellous Bone
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
2
), p.
024501
.
31.
Thiele
,
O. C.
,
Eckhardt
,
C.
,
Linke
,
B.
,
Schneider
,
E.
, and
Lill
,
C. A.
, 2007, “
Factors Affecting the Stability of Screws in Human Cortical Osteoporotic Bone
,”
J. Bone Joint Surg. Br.
0301-620X,
89
(
5
), pp.
701
705
.
32.
Lyon
,
W. F.
,
Cochran
,
J. R.
, and
Smith
,
L.
, 1941, “
Actual Holding Power of Various Screws in Bone
,”
Ann. Surg.
0003-4932,
114
, pp.
376
384
.
33.
Stromsoe
,
K.
,
Kok
,
W. L.
,
Hoiseth
,
A.
, and
Alho
,
A.
, 1993, “
Holding Power of the 4.5 mm AO/ASIF Cortex Screw in Cortical Bone in Relation to Bone Mineral
,”
Injury
0020-1383,
24
(
10
), pp.
656
659
.
34.
An
,
Y. H.
, and
Draughn
,
R. A.
, 1999, “
Mechanical Properties and Testing Methods of Bone
,”
Animal Models in Orthopaedic Research
,
Y. H.
An
and
R. J.
Friedman
, eds.,
CRC
,
Boca Raton, FL
, pp.
139
163
.
35.
Yovich
,
J. V.
,
Turner
,
A. S.
, and
Smith
,
F. W.
, 1985, “
Holding Power of Orthopedic Screws in Equine Third Metacarpal and Metatarsal Bones: Part 2. Adult Horse Bone
,”
Vet. Surg.
0161-3499,
14
, pp.
230
234
.
36.
Murphy
,
T. P.
,
Hill
,
C. M.
,
Kapatkin
,
A. S.
,
Radin
,
A.
,
Shofer
,
F. S.
, and
Smith
,
G. K.
, 2001, “
Pullout Properties of 3.5-mm AO/ASIF Self-Tapping and Cortex Screws in a Uniform Synthetic Material and in Canine Bone
,”
Vet. Surg.
0161-3499,
30
, pp.
253
260
.
37.
Koranyi
,
E.
,
Bowman
,
C. E.
,
Knecht
,
C. D.
, and
Janssen
,
M.
, 1970, “
Holding Power of Orthopaedic Screws in Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
72
, pp.
283
286
.
38.
Chapman
,
J. R.
,
Harrington
,
R. M.
,
Lee
,
K. M.
,
Anderson
,
P. A.
,
Tencer
,
A. F.
, and
Kowalski
,
D.
, 1996, “
Factors Affecting the Pullout Strength of Cancellous Bone Screws
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
391
398
.
39.
Cleek
,
T. M.
,
Reynolds
,
K. J.
, and
Hearn
,
T. C.
, 2007, “
Effect of Screw Torque Level on Cortical Bone Pullout Strength
,”
J. Orthop. Trauma
0890-5339,
21
(
2
), pp.
117
123
.
You do not currently have access to this content.