The objective of the present study was to perform biaxial testing and apply constitutive modeling to develop a strain energy function that accurately predicts the material behavior of the aortic valve leaflets. Ten leaflets from seven normal porcine aortic valves were biaxially stretched in a variety of protocols and the data combined to develop and fit a strain energy function to describe the material behavior. The results showed that the nonlinear anisotropic behavior of the aortic valve is well described by a strain energy function of two strain invariants, which uses only three coefficients to accurately predict the stress-strain behavior over a wide range of deformations. This structurally-motivated constitutive law has many applications, including computational modeling for clinical and engineering valve treatments.

1.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 1998, “
Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
534
545
.
2.
Thubrikar
,
M.
, 1989,
The Aortic Valve
,
CRC
,
Boca Raton, FL
.
3.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
4.
Beck
,
A.
,
Thubrikar
,
M.
, and
Robicsek
,
F.
, 2001, “
Stress Analysis of the Aortic Valve With and Without the Sinuses of Valsalva
,”
J. Heart Valve Dis.
0966-8519,
10
, pp.
1
11
.
5.
Boerboom
,
R. A.
,
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
, 2003, “
Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1040
1053
.
6.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
7.
Ranga
,
A.
,
Mongrain
,
R.
,
Mendes Galaz
,
R.
,
Biadillah
,
Y.
, and
Cartier
,
R.
, 2004, “
Large-Displacement 3D Structural Analysis of an Aortic Valve Model With Nonlinear Material Properties
,”
J. Med. Eng. Technol.
0309-1902,
28
, pp.
95
103
.
8.
Stella
,
J. A.
,
Liao
,
J.
, and
Sacks
,
M. S.
, 2007, “
Time-Dependent Biaxial Mechanical Behavior of the Aortic Valve Leaflet
,”
J. Biomech.
0021-9290,
40
, pp.
3169
3177
.
9.
Chen
,
L.
,
Yin
,
F. C.
, and
May-Newman
,
K.
, 2004, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
244
251
.
10.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
333
339
.
11.
May-Newman
,
K.
, and
Yin
,
F. C.
, 1998, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
38
47
.
12.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde-Treated Aortic Valve Cusp–Part I: Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
23
30
.
13.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
, 2006, “
Biaxial Stress-Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiological Strain Rates
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
315
325
.
14.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues and Organs
,
Springer-Verlag
,
New York
.
15.
Spencer
,
A. J. M.
, 1972,
Deformations of Fibre-Reinforced Materials
,
Clarendon
,
Oxford
.
16.
May-Newman
,
K.
, and
Yin
,
F. C.
, 1995, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
0002-9513,
269
, pp.
H1319
H1327
.
17.
Clark
,
R. E.
, 1973, “
Stress-Strain Characteristics of Fresh and Frozen Human Aortic and Mitral Leaflets and Chordae Tendineae. Implications for Clinical Use
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
66
, pp.
202
208
.
18.
Mayne
,
A. S.
,
Christie
,
G. W.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
, 1989, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprostheses With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
98
, pp.
170
180
.
19.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
, 1992, “
Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation
,”
J. Card. Surg.
0886-0440,
7
, pp.
71
78
.
20.
Weinberg
,
E. J.
, and
Kaazempur-Mofrad
,
M. R.
, 2005, “
On the Constitutive Modeling for Heart Valve Leaflet Mechanics
,”
Cardiovasc. Eng.
1567-8822,
5
, pp.
37
43
.
21.
Weinberg
,
E. J.
, and
Kaazempur-Mofrad
,
M. R.
, 2006, “
A Large-Strain Finite Element Formulation for Biological Tissues With Application to Mitral Valve Leaflet Tissue Mechanics
,”
J. Biomech.
0021-9290,
39
, pp.
1557
1561
.
22.
Einstein
,
D. R.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
,
Cochran
,
R. P.
, and
Kunzelman
,
K. S.
, 2003, “
Dynamic Finite Element Implementation of Nonlinear, Anisotropic Hyperelastic Biological Membranes
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
, pp.
33
44
.
23.
Prot
,
V.
,
Haaverstad
,
R.
, and
Skallerud
,
B.
, 2009, “
Finite Element Analysis of the Mitral Apparatus: Annulus Shape Effect and Chordal Force Distribution
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
1
), pp.
43
55
.
24.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
, and
Cochran
,
R. P.
, 2004, “
Hemodynamic Determinants of the Mitral Valve Closure Sound: A Finite Element Study
,”
Med. Biol. Eng. Comput.
0140-0118,
42
, pp.
832
846
.
You do not currently have access to this content.