The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.

1.
Bertagnoli
,
R.
, and
Kumar
,
S.
, 2002, “
Indications for Full Prosthetic Disc Arthroplasty: A Correlation of Clinical Outcomes Against a Variety of Indications
,”
Eur. Spine J.
0940-6719,
11
(
2
), pp.
S131
S136
.
2.
Cunningham
,
B. W.
,
Dmitriev
,
A. E.
,
Hu
,
N.
, and
McAfee
,
P. C.
, 2003, “
General Principles of Total Disc Replacement Arthroplasty: Seventeen Cases in a Nonhuman Primate Model
,”
Spine
0362-2436,
28
, pp.
S118
S124
.
3.
de Kleuver
,
M.
,
Oner
,
F. C.
, and
Jacobs
,
W. C.
, 2003, “
Total Disc Replacement for Chronic Low Back Pain: Background and a Systematic Review of the Literature
,”
Eur. Spine J.
0940-6719,
12
(
2
), pp.
108
116
.
4.
Punt
,
I. M.
,
Visser
,
V. M.
,
van Rhijn
,
L. W.
,
Kurtz
,
S. M.
,
Antonis
,
J.
,
Schurink
,
G. W. H.
, and
van Ooij
,
A.
, 2008, “
Complications and Reoperations of the SB Charité Lumbar Disc Prosthesis: Experience in 75 Patients
,”
Eur. Spine J.
0940-6719,
17
(
1
), pp.
36
43
.
5.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Yamamoto
,
I.
, and
Crisco
,
J.
, 1994, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine Shown by Three-Dimensional Load Displacement Curves
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
3
), pp.
413
424
.
6.
Mayer
,
T. G.
,
Kondraske
,
G.
,
Beals
,
S. B.
, and
Gatchel
,
R. J.
, 1997, “
Spinal Range of Motion. Accuracy and Sources of Error With Inclinometric Measurement
,”
Spine
0362-2436,
22
(
17
), pp.
1976
1984
.
7.
Cunningham
,
B. W.
,
Kotani
,
Y.
,
McNulty
,
P. S.
,
Cappuccino
,
A.
, and
McAfee
,
P. C.
, 1997, “
The Effect of Spinal Destabilization and Instrumentation on Lumbar Intradiscal Pressure: An In Vitro Biomechanical Analysis
,”
Spine
0362-2436,
22
(
22
), pp.
2655
2663
.
8.
Panjabi
,
M. M.
, 1992, “
The Stabilizing System of the Spine. Part II. Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord.
0895-0385,
5
(
4
), pp.
390
397
.
9.
M.
Mansour
,
S.
Spiering
,
C.
Lee
,
H.
Dathe
,
A. K.
Kalscheuer
,
D.
Kubein-Meesenburg
, and
H.
Nägerl
, 2004, “
Evidence for IHA Migration During Axial Rotation of a Lumbar Spine Segment by Using a Novel High-Resolution 6D Kinematic Tracking System
,”
J. Biomech.
0021-9290,
37
, pp.
583
592
.
10.
Spoor
,
C.
, 1984, “
Explanation, Verification and Application of Helical-Axis Error Propagation Formulae
,”
Hum. Mov. Sci.
0167-9457,
3
(
1–2
), pp.
95
117
.
11.
Adams
,
D. S.
,
McNally
,
M. A.
, and
Dolan
,
P.
, 1996, “
‘Stress’ Distributions Inside Intervertebral Discs: The Effects of Age and Degeneration
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
6
), pp.
965
972
.
12.
Rousseau
,
M. A.
,
Bradford
,
D. S.
,
Bertagnoli
,
R.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2006, “
Disc Arthroplasty Design Influences Intervertebral Kinematics and Facet Forces
,”
Eur. Spine J.
0940-6719,
6
(
3
), pp.
258
266
.
13.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
, 1995, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
0362-2436,
20
(
8
), pp.
887
900
.
14.
Panjabi
,
M. M.
,
Brand
,
R. A.
, Jr.
, and
White
,
A. A.
, 1976, “
Three-Dimensional Flexibility and Stiffness Properties of the Human Thoracic Spine
,”
J. Biomech.
0021-9290,
9
(
4
), pp.
185
192
.
15.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
, 2003, “
Physiological Axial Compressive Preloads Increase Motion Segment Stiffness, Linearity and Hysteresis in All Six Degrees of Freedom for Small Displacements About the Neutral Posture
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
547
552
.
16.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A. F.
, 2004, “
Structural Behavior of the Human Lumbar Spinal Motion Segments
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
205
212
.
17.
Stokes
,
I. A.
,
Gardner-Morse
,
M. G.
,
Churchill
,
D.
, and
Laible
,
J. P.
, 2002, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
517
521
.
18.
Stokes
,
I. A. F.
, and
Iatridis
,
J. C.
, 2005,
Basic Orthopaedic Biomechanics and Mechano-Biology
, 3rd ed.,
C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia
, pp.
529
561
.
19.
McGill
,
S.
, and
Norman
,
R.
, 1987, “
Effects of an Anatomically Detailed Erector Spinae Model on L4/L5 Disc Compression and Shear
,”
J. Biomech.
0021-9290,
20
(
6
), pp.
591
600
.
20.
Cholewicki
,
J.
, and
McGill
,
S. M.
, 1996, “
Mechanical Stability of the In Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
(
1
), pp.
1
15
.
21.
Howarth
,
S. J.
,
Allison
,
A. E.
,
Grenier
,
S. G.
,
Cholewicki
,
J.
, and
McGill
,
S. M.
, 2004, “
On the Implications of Interpreting the Stability Index: A Spine Example
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1147
1154
.
22.
McGill
,
S. M.
,
Seguim
,
J.
, and
Bennett
,
G.
, 1994, “
Passive Stiffness of the Lumbar Torso About the Flexion-Extension, Lateral Bend and Axial Twist Axes: The Effect of Belt Wearing and Breath Holding
,”
Spine
0362-2436,
19
(
6
), pp.
696
704
.
23.
O’Reilly
,
O. M.
, 2007, “
The Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid Body Dynamics
,”
ASME J. Appl. Mech.
0021-8936,
74
(
2
), pp.
256
258
.
24.
O’Reilly
,
O. M.
, and
Srinivasa
,
A. R.
, 2002, “
On Potential Energies and Constraints in the Dynamics of Rigid Bodies and Particles
,”
Math. Probl. Eng.
1024-123X,
8
(
3
), pp.
169
180
.
25.
Howard
,
S.
,
Žefran
,
M.
, and
Kumar
,
V.
, 1998, “
On the 6×6 Cartesian Stiffness Matrix for Three-Dimensional Motions
,”
Mech. Mach. Theory
0094-114X,
33
(
4
), pp.
389
408
.
26.
Žefran
,
M.
, and
Kumar
,
V.
, 2002, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
30
38
.
27.
O’Reilly
,
O. M.
, 2008,
Intermediate Engineering Dynamics: A Unified Approach to Newton-Euler and Lagrangian Mechanics
,
Cambridge University Press
,
New York
.
28.
Crawford
,
N. R.
,
Yamaguchi
,
G. T.
, and
Dickman
,
C. A.
, 1996, “
Methods for Determining Spinal Flexion/Extension, Lateral Bending, and Axial Rotation From Marker Coordinate Data: Analysis and Refinement
,”
Hum. Mov. Sci.
0167-9457,
15
(
1
), pp.
55
78
.
29.
Rousseau
,
M. A.
,
Bradford
,
D. S.
,
Hadi
,
T. M.
,
Pedersen
,
K. L.
, and
Lotz
,
J. C.
, 2006, “
The Instant Axis of Rotation Influences Facet Forces at L5/S1 During Flexion/Extension and Lateral Bending
,”
Eur. Spine J.
0940-6719,
15
(
3
), pp.
299
307
.
30.
Adams
,
M.
,
Hutton
,
W.
, and
Stott
,
J.
, 1980, “
The Resistance to Flexion of the Lumbar Intervertebral Joint
,”
Spine
0362-2436,
5
, pp.
245
253
.
31.
Duval-Beaupere
,
G.
, and
Robain
,
G.
, 1987, “
Visualization on Full Spine Radiographs of the Anatomical Connections of the Centers of the Segmental Body Mass Supported by Each Vertebra and Measured In Vivo
,”
Int. Orthop.
0341-2695,
11
, pp.
261
269
.
32.
McGlashen
,
K.
,
Miller
,
J.
,
Schultz
,
A.
, and
Andersson
,
G.
, 1987, “
Load Displacement Behavior of the Human Lumbo-Sacral Joint
,”
J. Orthop. Res.
0736-0266,
5
(
4
), pp.
488
496
.
33.
White
,
A. A.
, III
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
, 2nd ed.,
Lippincott Williams & Wilkins
,
Philadelphia
.
34.
Dorst
,
L.
, 2005, “
First Order Error Propagation of the Procrustes Method for 3D Attitude Estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
27
(
2
), pp.
221
229
.
35.
Shuster
,
M. D.
, and
Oh
,
S. D.
, 1981, “
Three-Axis Attitude Determination From Vector Observations
,”
J. Guidance
,
4
(
1
), pp.
70
77
.
36.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
, 1980, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
0021-9290,
13
(
4
), pp.
391
393
.
37.
Woltring
,
H. J.
,
Huiskes
,
R.
,
de Lange
,
A.
, and
Veldpaus
,
F. E.
, 1985, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
0021-9290,
18
(
5
), pp.
379
389
.
38.
Shuster
,
M. D.
, 1993, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
0021-9142,
41
(
4
), pp.
439
517
.
39.
Casey
,
J.
, and
Lam
,
V. C.
, 1986, “
On the Relative Angular Velocity Tensor
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
399
400
.
40.
Antman
,
S. S.
, 1972, “
Solution to Problem 71–24: ‘Angular Velocity and Moment Potential for a Rigid Body,’ by J. G. Simmonds
,”
SIAM Rev.
0036-1445,
14
, pp.
649
652
.
41.
Simmonds
,
J. G.
, 1984, “
Moment Potentials
,”
Am. J. Phys.
0002-9505,
52
(
9
), pp.
851
852
.
42.
Simmonds
,
J. G.
, 1985, “
Moment Potentials [Am. J. Phys. 52, 851–857 (1984)]
,”
Am. J. Phys.
0002-9505,
53
, p.
277
(E).
You do not currently have access to this content.