Articulating cervical disk implants have been proposed as an alternative to disk fusion in the treatment of cervical disk disease. To examine the mechanical effect of articulating cervical disk implants (ACDI) versus simulated cervical disk fusion, a mechanical test device was constructed and cadaveric tests were carried out. While results show little effect on the pressures above and below the treatment level, the percent hysteretic behavior of the specimens trended to be higher for the ACDI, indicating that these implants retain more of the natural energy absorption capability of the cervical spine.
Issue Section:
Bone/Orthopedics
Keywords:
bone,
orthopaedics,
prosthetics,
patient treatment,
diseases,
hysteresis,
mechanical testing
Topics:
Absorption,
Diseases,
Disks,
Kinematics,
Stress,
Bone,
Cervical spine,
Pressure,
Mechanical testing
1.
Bao
, Q.-B.
, McCullen
, G. M.
, Hingam
, P. A.
, Dumbleton
, J. H.
, and Yuan
, H. A.
, 1996, “The Artificial Disc: Theory, Design and Materials
,” Biomaterials
0142-9612 17
, pp. 1157
–1167
.2.
Patil
, A. A.
, “Artificial Intervertebral Disc
,” U.S. Patent No. 4,309,777, January 12, 1982.3.
Salib
, R. M.
, and Pettine
, K. A.
, “Intervertebral Disk Arthroplasty
,” U.S. Patent No. 5,258,031, November 2, 1993.4.
Weber
, B. G.
, 1980, “Total Intervertebral Disc Prosthesis
,” West German Patent DE 3,023,353.5.
Büttner-Janz
, K.
, Helisch
, H. J.
, Schellnack
, K.
, and Shumann
, R.
, 1988, “Intervertebral Disc Endoprosthesis
,” U.S. Patent 4,759,766.6.
Büttner-Janz
, K.
, Schellnack
, K.
, and Zippel
, H.
, 1989, “Biomechanics of the SB Charité Lumbar Intervertebral Disc
,” Endoprosthesis Int Orthop (SICOT)
13
, pp. 173
–186
.7.
Mendenhall
, S.
, “A Brief Review of Disc Replacements
,” Orthopedic Network News
, 15
(4
), p. 11
.10.
Murrey
, D. B.
, Darden
, B. V.
, Laxer
, E. B.
, Rhyne
, A. L.
, Milam
, A.
, Haney
, A. D.
, and Odum
, S. M.
, 2005, “Early Results of a Randomized Controlled Clinical Trial Comparing Prodisc-C® and ACDF for Cervical Radiculopathy
,” Spine Arthroplasty Society, New York.11.
Panjabi
, M. M.
, 1988, “Biomechanical Evaluation of Spinal Fusion Devices: A Conceptual Framework
,” Spine
0362-2436, 13
, pp. 1129
–1134
.12.
Lysack
, J. T.
, Dickey
, J. P.
, Dumas
, G. A.
, and Yen
, D.
, 2000, “A Continuous Pure Moment Loading Apparatus for Biomechanical Testing of Multi-Segment Spine Segments
,” J. Biomech.
0021-9290, 22
, pp. 765
–770
.13.
Asazuma
, T.
, Stokes
, I. A.
, Moreland
, M. S.
, and Suzuki
, N.
, 1990, “Intersegmental Spinal Flexibility With Lumbosacral Instrumentation. An In-Vitro Investigation
,” Spine
0362-2436, 15
, pp. 1153
–1158
.14.
Crawford
, N. R.
, Brantley
, A. G. U.
, Dickman
, C. A.
, and Koenenman
, E. J.
, 1995, “An Apparatus for Providing Pure Nonconstraining Moments to Spine Segments In Vitro
,” Spine
0362-2436, 20
, pp. 2097
–2100
.15.
Panjabi
, M. M.
, Takehiko
, M.
, Cripton
, P. A.
, Wang
, J.-L.
, Nain
, A. S.
, and Dubois
, C.
, 2001, “Development of a System for In-Vitro Neck Muscle Force Replication With Whole Cervical Spine Specimens
,” Spine
0362-2436, 26
, pp. 2214
–2219
.16.
Bernhardt
, P.
, Wilke
, H.-J.
, Wegner
, K. H.
, Jungkuntz
, B.
, Böhm
, A.
, and Claes
, L. E.
, 1999, “Multiple Muscle Force Simulation in Axial Rotation of the Cervical Spine
,” Clin. Biomech. (Los Angel. Calif.)
0191-7870, 14
, pp. 32
–40
.17.
DiAngelo
, D. J.
, Robertson
, J. T.
, Metcalf
, N. H.
, McVay
, B. J.
, and Davis
, R. C.
, 2003, “Biomechanical Testing of an Artificial Cervical Joint and an Anterior Cervical Plate
,” J. Spinal Disord.
0895-0385, 16
(4
), pp. 314
–323
.18.
Cripton
, P. A.
, Bruelmann
, S. B.
, Orr
, T. E.
, Oxland
, T. R.
, and Nolte
, L.-P.
, 2000, “In Vitro Axial Preload Application During Spine Flexibility Resting: Towards Reduced Apparatus-Related Artifacts
,” J. Biomech.
0021-9290, 33
, pp. 1559
–1568
.19.
McGill
, S. M.
, Jones
, K.
, and Bennett
, G.
, 1994, “Passive Stiffness of the Human Neck in Flexion, Extension and Lateral Bending
,” Clin. Biomech. (Los Angel. Calif.)
0191-7870, 9
, pp. 193
–198
.20.
Eck
, J. C.
, Humpreys
, S. C.
, Lim
, T. H.
, Jegon
, S. T.
, Kim
, J. G.
, Hodges
, D. O.
, and An
, H. S.
, 2002, “Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segmental Motion
,” Spine
0362-2436, 27
(22
), pp. 2431
–2434
.21.
Pelker
, P. R.
, Duranceau
, J. S.
, and Panjabi
, M. M.
, 1991, “Cervical Spine Stabilization: A Three-Dimensional, Biomechanical Evaluation of Rotational Stability, Strength and Failure Mechanisms
,” Spine
0362-2436, 16
, pp. 117
–122
.22.
Wilke
, H. J.
, Wegner
, K.
, and Claes
, L.
, 1998, “Testing Criteria for Spinal Implants: Recommendations for the Standardization of In-Vitro Stability Testing of Spinal Implants
,” Eur. Spine J.
0940-6719, 7
, pp. 148
–154
.23.
Cripton
, P. A.
, Dumas
, G. A.
, and Nolte
, L. P.
, 2001, “A Minimally Disruptive Technique for Measuring Intervertebral Disc Pressure In Vitro: Application to the Cervical Spine
,” J. Biomech.
0021-9290, 34
(4
), pp. 545
–549
.24.
Cripton
, P.
, and Bruehlmann
, S.
, 2000, “In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,” J. Biomech.
0021-9290, 33
, pp. 1559
–1568
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.