Articulating cervical disk implants have been proposed as an alternative to disk fusion in the treatment of cervical disk disease. To examine the mechanical effect of articulating cervical disk implants (ACDI) versus simulated cervical disk fusion, a mechanical test device was constructed and cadaveric tests were carried out. While results show little effect on the pressures above and below the treatment level, the percent hysteretic behavior of the specimens trended to be higher for the ACDI, indicating that these implants retain more of the natural energy absorption capability of the cervical spine.

1.
Bao
,
Q.-B.
,
McCullen
,
G. M.
,
Hingam
,
P. A.
,
Dumbleton
,
J. H.
, and
Yuan
,
H. A.
, 1996, “
The Artificial Disc: Theory, Design and Materials
,”
Biomaterials
0142-9612
17
, pp.
1157
1167
.
2.
Patil
,
A. A.
, “
Artificial Intervertebral Disc
,” U.S. Patent No. 4,309,777, January 12, 1982.
3.
Salib
,
R. M.
, and
Pettine
,
K. A.
, “
Intervertebral Disk Arthroplasty
,” U.S. Patent No. 5,258,031, November 2, 1993.
4.
Weber
,
B. G.
, 1980, “
Total Intervertebral Disc Prosthesis
,” West German Patent DE 3,023,353.
5.
Büttner-Janz
,
K.
,
Helisch
,
H. J.
,
Schellnack
,
K.
, and
Shumann
,
R.
, 1988, “
Intervertebral Disc Endoprosthesis
,” U.S. Patent 4,759,766.
6.
Büttner-Janz
,
K.
,
Schellnack
,
K.
, and
Zippel
,
H.
, 1989, “
Biomechanics of the SB Charité Lumbar Intervertebral Disc
,”
Endoprosthesis Int Orthop (SICOT)
13
, pp.
173
186
.
7.
Mendenhall
,
S.
, “
A Brief Review of Disc Replacements
,”
Orthopedic Network News
,
15
(
4
), p.
11
.
10.
Murrey
,
D. B.
,
Darden
,
B. V.
,
Laxer
,
E. B.
,
Rhyne
,
A. L.
,
Milam
,
A.
,
Haney
,
A. D.
, and
Odum
,
S. M.
, 2005, “
Early Results of a Randomized Controlled Clinical Trial Comparing Prodisc-C® and ACDF for Cervical Radiculopathy
,” Spine Arthroplasty Society, New York.
11.
Panjabi
,
M. M.
, 1988, “
Biomechanical Evaluation of Spinal Fusion Devices: A Conceptual Framework
,”
Spine
0362-2436,
13
, pp.
1129
1134
.
12.
Lysack
,
J. T.
,
Dickey
,
J. P.
,
Dumas
,
G. A.
, and
Yen
,
D.
, 2000, “
A Continuous Pure Moment Loading Apparatus for Biomechanical Testing of Multi-Segment Spine Segments
,”
J. Biomech.
0021-9290,
22
, pp.
765
770
.
13.
Asazuma
,
T.
,
Stokes
,
I. A.
,
Moreland
,
M. S.
, and
Suzuki
,
N.
, 1990, “
Intersegmental Spinal Flexibility With Lumbosacral Instrumentation. An In-Vitro Investigation
,”
Spine
0362-2436,
15
, pp.
1153
1158
.
14.
Crawford
,
N. R.
,
Brantley
,
A. G. U.
,
Dickman
,
C. A.
, and
Koenenman
,
E. J.
, 1995, “
An Apparatus for Providing Pure Nonconstraining Moments to Spine Segments In Vitro
,”
Spine
0362-2436,
20
, pp.
2097
2100
.
15.
Panjabi
,
M. M.
,
Takehiko
,
M.
,
Cripton
,
P. A.
,
Wang
,
J.-L.
,
Nain
,
A. S.
, and
Dubois
,
C.
, 2001, “
Development of a System for In-Vitro Neck Muscle Force Replication With Whole Cervical Spine Specimens
,”
Spine
0362-2436,
26
, pp.
2214
2219
.
16.
Bernhardt
,
P.
,
Wilke
,
H.-J.
,
Wegner
,
K. H.
,
Jungkuntz
,
B.
,
Böhm
,
A.
, and
Claes
,
L. E.
, 1999, “
Multiple Muscle Force Simulation in Axial Rotation of the Cervical Spine
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
14
, pp.
32
40
.
17.
DiAngelo
,
D. J.
,
Robertson
,
J. T.
,
Metcalf
,
N. H.
,
McVay
,
B. J.
, and
Davis
,
R. C.
, 2003, “
Biomechanical Testing of an Artificial Cervical Joint and an Anterior Cervical Plate
,”
J. Spinal Disord.
0895-0385,
16
(
4
), pp.
314
323
.
18.
Cripton
,
P. A.
,
Bruelmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
, and
Nolte
,
L.-P.
, 2000, “
In Vitro Axial Preload Application During Spine Flexibility Resting: Towards Reduced Apparatus-Related Artifacts
,”
J. Biomech.
0021-9290,
33
, pp.
1559
1568
.
19.
McGill
,
S. M.
,
Jones
,
K.
, and
Bennett
,
G.
, 1994, “
Passive Stiffness of the Human Neck in Flexion, Extension and Lateral Bending
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
9
, pp.
193
198
.
20.
Eck
,
J. C.
,
Humpreys
,
S. C.
,
Lim
,
T. H.
,
Jegon
,
S. T.
,
Kim
,
J. G.
,
Hodges
,
D. O.
, and
An
,
H. S.
, 2002, “
Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segmental Motion
,”
Spine
0362-2436,
27
(
22
), pp.
2431
2434
.
21.
Pelker
,
P. R.
,
Duranceau
,
J. S.
, and
Panjabi
,
M. M.
, 1991, “
Cervical Spine Stabilization: A Three-Dimensional, Biomechanical Evaluation of Rotational Stability, Strength and Failure Mechanisms
,”
Spine
0362-2436,
16
, pp.
117
122
.
22.
Wilke
,
H. J.
,
Wegner
,
K.
, and
Claes
,
L.
, 1998, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In-Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
0940-6719,
7
, pp.
148
154
.
23.
Cripton
,
P. A.
,
Dumas
,
G. A.
, and
Nolte
,
L. P.
, 2001, “
A Minimally Disruptive Technique for Measuring Intervertebral Disc Pressure In Vitro: Application to the Cervical Spine
,”
J. Biomech.
0021-9290,
34
(
4
), pp.
545
549
.
24.
Cripton
,
P.
, and
Bruehlmann
,
S.
, 2000, “
In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,”
J. Biomech.
0021-9290,
33
, pp.
1559
1568
.
You do not currently have access to this content.