Many cementless implant designs rely upon a diaphyseal press-fit in conjunction with a porous coated implant surface to achieve primary or short term fixation, thereby constraining interface micromotion to such a level that bone ingrowth and consequent secondary or long-term fixation, i.e., osseointegration, can occur. Bone viscoelasticity, however, has been found to affect stem primary stability by reducing push-out load. In this investigation, an axisymmetric finite element model of a cylindrical stem and diaphyseal cortical bone section was created in order to parametrically evaluate the effect of bone viscoelasticity on stem push-out while controlling coefficient of friction (μ=0.15, 0.40, and 1.00) and stem-bone diametral interference (δ=0.01, 0.05, 0.10, and 0.50mm). Based on results from a previous study, it was hypothesized that stem-bone interference (i.e., press-fit) would elicit a bone viscoelastic response which would reduce the initial fixation of the stem as measured by push-out load. Results indicate that for all examined combinations of μ and δ, bone viscoelastic behavior reduced the push-out load by a range of 2.6–82.6% due to stress relaxation of the bone. It was found that the push-out load increased with μ for each value of δ, but minimal increases in the push-out load (2.9–4.9%) were observed as δ was increased beyond 0.10mm. Within the range of variables reported for this study, it was concluded that bone viscoelastic behavior, namely stress relaxation, has an asymptotic affect on stem contact pressure, which reduces stem push-out load. It was also found that higher levels of coefficient of friction are beneficial to primary fixation, and that an interference “threshold” exists beyond which no additional gains in push-out load are achieved.

1.
Callaghan
,
J. J.
, 1992, “
Total Hip Arthroplasty. Clinical Perspective
,”
Clin. Orthop. Relat. Res.
0009-921X,
276
, pp.
33
40
.
2.
Katz
,
R. P.
,
Callaghan
,
J. J.
,
Sullivan
,
P. M.
, and
Johnston
,
R. C.
, 1997, “
Long-Term Results of Revision Total Hip Arthroplasty With Improved Cementing Technique
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
79
(
2
), pp.
322
326
.
3.
Mulroy
,
W. F.
, and
Harris
,
W. H.
, 1996, “
Revision Total Hip Arthroplasty With Use of So-Called Second-Generation Cementing Techniques for Aseptic Loosening of the Femoral Component. A Fifteen-Year-Average Follow-Up Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
3
), pp.
325
303
.
4.
White
,
S. H.
, 1998, “
The Fate of Cemented Total Hip Arthroplasty in Young Patients
,”
Clin. Orthop. Relat. Res.
0009-921X,
231
, pp.
29
34
.
5.
Bauer
,
T. W.
, and
Schils
,
J.
, 1999, “
The Pathology of Total Joint Arthroplasty. I. Mechanisms of Implant Fixation
,”
Skeletal Radiol.
0364-2348,
28
(
9
), pp.
483
497
.
6.
Bobyn
,
J. D.
,
Pilliar
,
R. M.
,
Cameron
,
H. U.
, and
Weatherly
,
G. C.
, 1980, “
The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
150
, pp.
263
270
.
7.
Bobyn
,
J. D.
,
Pilliar
,
R. M.
,
Cameron
,
H. U.
, and
Weatherly
,
G. C.
, 1981, “
Osteogenic Phenomena Across Endosteal Bone-Implant Spaces With Porous Surfaced Intramedullary Implants
,”
Acta Orthop. Scand.
0001-6470,
52
(
2
), pp.
145
153
.
8.
Cameron
,
H. U.
,
Pilliar
,
R. M.
, and
MacNab
,
I.
, 1973, “
The Effect of Movement on the Bonding of Porous Metal to Bone
,”
J. Biomed. Mater. Res.
0021-9304,
7
(
4
), pp.
301
311
.
9.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
, 1986, “
Observations on the Effect of Movement on Bone Ingrowth into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
0009-921X,
208
, pp.
108
113
.
10.
Rosenberg
,
A.
, 1989, “
Cementless Total Hip Arthroplasty: Femoral Remodeling and Clinical Experience
,”
Orthopedics
0147-7447,
12
(
9
), pp.
1223
1233
.
11.
Cameron
,
H. U.
, 2004, “
Intraoperative Hip Fractures: Ruining Your Day
,”
J. Arthroplasty
0883-5403,
19
(
4 Suppl 1
), pp.
99
103
.
12.
Lee
,
S. R.
, and
Bostrum
,
M. P.
, 2004, “
Periprosthetic Fractures of the Femur After Total Hip Arthroplasty
,”
Instr Course Lect
0065-6895,
53
, pp.
111
118
.
13.
Meek
,
R. M.
,
Garbuz
,
D. S.
,
Masri
,
B. A.
,
Gredanus
,
N. V.
, and
Duncan
,
C. P.
, 2004, “
Intraoperative Fracture of the Femur in Revision Total Hip Arthroplasty With a Diaphyseal Fitting Stem
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
3
), pp.
480
485
.
14.
Stuchin
,
S. A.
, 1990, “
Femoral Shaft Fracture in Porous and Press-Fit Total Hip Arthroplasty
,”
Orthop. Rev.
0094-6591,
19
(
2
), pp.
153
159
.
15.
Jasty
,
M.
,
Henshaw
,
R. M.
,
O’Connor
,
D. O.
, and
Harris
,
W. H.
, 1993, “
High Assembly Strains and Femoral Fractures Produced During Insertion of Uncemented Femoral Components. A Cadaver Study
,”
J. Arthroplasty
0883-5403,
8
(
5
), pp.
479
487
.
16.
Monti
,
L.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Ceroni
,
R. G.
, 2001, “
In Vitro Testing of the Primary Stability of the Ver Sys Enhanced Taper Stem: A Comparative Study in Intact and Intraoperative Cracked Femora
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
1
), pp.
75
83
.
17.
Blaha
,
J. D.
, “
Press-Fit Femoral Components
,” 1998,
The Adult Hip
,
J. J.
Callaghan
,
A. G.
Rosenberg
, and
H. E.
Rubash
, eds.,
Lippincott-Raven
, Philadelphia, pp.
1085
1092
.
18.
Lakes
,
R.
, 2001, “
Viscoelastic Properties of Cortical Bone
,”
Bone Mechanic Handbook
, 2nd ed.,
S. C.
Cowin
, ed.,
CRC Press
, Boca Raton, pp.
11
21
.
19.
Wirtz
,
D. C.
,
Schiffers
,
N.
,
Pandorf
,
T.
et al.
, 2000, “
Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur
,”
J. Biomech.
0021-9290,
33
(
10
), pp.
1325
1330
.
20.
Brown
,
C. U.
,
Norman
,
T. L.
,
Kish
,
V. L.
, III
,
Gruen
,
T. A.
, and
Blaha
,
J. D.
, 2002, “
Time-Dependent Circumferential Deformation of Cortical Bone Upon Internal Radial Loading
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
456
461
.
21.
Norman
,
T. L.
,
Ackerman
,
E. S.
,
Kish
,
V. L.
,
Smith
,
T. S.
,
Gruen
,
T. A.
,
Yates
,
A. J.
, and
Blaha
,
J. D.
, 2006, “
Cortical Bone Viscoelasticity and Fixation Strength of Press-Fit Femoral Stems: An In-Vitro Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
13
17
.
22.
Kuiper
,
J. H.
, and
Huiskes
,
R.
, 1996, “
Friction and Stem Stiffness Affect Dynamic Interface Motion in Total Hip Replacement
,”
J. Orthop. Res.
0736-0266,
14
(
1
), pp.
36
43
.
23.
Ramamurti
,
B. S.
,
Orr
,
T. E.
,
Bragdon
,
C. R.
et al.
, 1997, “
Factors Influencing Stability at the Interface Between a Porous Surface and Cancellous Bone: A Finite Element Analysis of a Canine In Vivo Micromotion Experiment
,”
J. Biomed. Mater. Res.
0021-9304,
36
(
2
), pp.
274
280
.
24.
Wong
,
M.
,
Eulenberger
,
J.
,
Schenk
,
R.
, and
Hunziker
,
E.
, 1995, “
Effect of Surface Topology on the Osseointegration of Implant Materials in Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
2
), pp.
1567
1575
.
25.
Otani
,
T.
,
Whiteside
,
L. A.
,
White
,
S. E.
, and
McCarthy
,
D. S.
, 1995, “
Reaming Technique of the Femoral Diaphysis in Cementless Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
311
, pp.
210
212
.
26.
O’Connor
,
J. J.
, 1968,
Standard Handbook of Lubrication Engineering
,
McGraw-Hill
, New York.
27.
Rancourt
,
D.
,
Shirazi-Adl
,
A.
, and
Drouin
,
G.
, 1990, “
Friction Properties of the Interface Between Porous-Coated Metals and Tibial Cancellous Bone
,”
J. Biomed. Mater. Res.
0021-9304,
24
, pp.
1503
1519
.
28.
Cowin
,
S. C.
, 1989,
Bone Mechanics
,
CRC Press
, Boca Raton, p.
102
.
29.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
(
6
), pp.
393
405
.
30.
Mann
,
K. A.
,
Allen
,
M. J.
, and
Ayers
,
D. C.
, 1998, “
Pre-Yield and Post-Yield Shear Behavior of the Cement-Bone Interface
,”
J. Orthop. Res.
0736-0266,
16
(
3
), pp.
370
378
.
31.
Noble
,
P. C.
,
Alexander
,
J. W.
,
Granberry
,
M. I.
,
Granberry
,
W. M.
et al.
, 1988, “
The Myth of “Press-Fit” in the Proximal Femur. Scientific Exhibit, Atlanta, GA
,”
American Academy of Orthopedic Surgeons 55th Annual Meeting
.
32.
Noble
,
P. C.
,
Alexander
,
J. W.
,
Lindahl
,
L. J.
et al.
, 1988, “
The Anatomic Basis of Femoral Component Design
,”
Clin. Orthop. Relat. Res.
0009-921X,
235
, pp.
148
165
.
You do not currently have access to this content.