Effects of cyclic stress on the mechanical properties of collagen fascicles were studied by in vitro tissue culture experiments. Collagen fascicles (approximately 300 μm in diameter) obtained from the rabbit patellar tendon were applied cyclic load at 4 Hz for one hour per day during culture period for one or two weeks, and then their mechanical properties were determined using a micro-tensile tester. There was a statistically significant correlation between tensile strength and applied peak stress in the range of 0 to 5 MPa, and the relation was expressed by a quadratic function. The maximum strength (19.4 MPa) was obtained at the applied peak stress of 1.8 MPa. The tensile strength of fascicles were within a range of control values, if they were cultured under peak stresses between 1.1 and 2.6 MPa. Similar results were also observed in the tangent modulus, which was maintained at control level under applied peak stresses between 0.9 and 2.8 MPa. The stress of 0.9 to 1.1 MPa is equivalent to approximately 40% of the in vivo peak stress which is developed in the intact rabbit patellar tendon by running, whereas that of 2.6 to 2.8 MPa corresponds to approximately 120% of the in vivo peak stress. Therefore, the fascicles cultured under applied peak stresses of lower than 40% and higher than 120% of the in vivo peak stress do not keep the original strength and modulus. These results indicate that the mechanical properties of cultured collagen fascicles strongly depend upon the magnitude of the stress applied during culture, which are similar to our previous results observed in stress-shielded and overstressed patellar tendons in vivo.

1.
Woo, S. L.-Y., Wang, C. W., Newton, P. O., and Lyon, R. M., 1990, “The Response of Ligaments to Stress Deprivation and Stress Enhancement-Biomechanical Studies,” Knee Ligaments: Structure, Function, Injury, and Repair, D. Daniel, W. H. Akeson, and J. J. O’Conner, eds., Raven Press, New York, pp. 337–350.
2.
Hayashi
,
K.
,
1996
, “
Biomechanical Studies of the Remodeling of Knee Joint Tendons and Ligaments
,”
J. Biomech.
,
29
, pp.
707
716
.
3.
Yasuda
,
K.
, and
Hayashi
,
K.
,
1999
, “
Changes in Biomechanical Properties of Tendons and Ligaments from Joint Disuse
,”
Osteoarthritis Cartilage
,
7
, pp.
122
129
.
4.
Noyes
,
F. R.
,
1977
, “
Functional Properties of Knee Ligaments and Alterations Induced by Immobilization. A Correlative Biomechanical and Histological Study in Primates
,”
Clin. Orthop.
,
123
, pp.
210
242
.
5.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Sites
,
T. J.
,
Newton
,
P. O.
,
Orlando
,
C. A.
, and
Akeson
,
W. H.
,
1987
, “
The Biomechanical and Morphological Changes in the Medial Collateral Ligament of the Rabbit after Immobilization and Remobilization
,”
J. Bone Jt. Surg.
,
69A
, pp.
1200
1211
.
6.
Muneta
,
T.
,
Yamamoto
,
H.
,
Takakuda
,
K.
,
Sakai
,
H.
, and
Furuya
,
K.
,
1993
, “
Effects of Postoperative Immobilization on the Reconstructed Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
21
, pp.
305
313
.
7.
Newton
,
P. O.
,
Woo
,
S. L.-Y.
,
MacKenna
,
D. A.
, and
Akeson
,
W. H.
,
1995
, “
Immobilization of Knee Joint Alters the Mechanical and Ultrastructural Properties of the Rabbit Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
13
, pp.
191
200
.
8.
Cabaud
,
H. E.
,
Chatty
,
A.
,
Gildengorin
,
V.
, and
Feltman
,
R. J.
,
1980
, “
Exercise Effects on the Strength of the Rat Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
8
, pp.
79
86
.
9.
Woo
,
S. L.-Y.
,
Ritter
,
M. A.
,
Amiel
,
D.
,
Sanders
,
T. M.
,
Gomez
,
M. A.
,
Kuei
,
S. C.
,
Garfin
,
S. R.
, and
Akeson
,
W. H.
,
1980
, “
The Biomechanical and Biochemical Properties of Swine Tendons-Long Term Effects of Exercise on the Digital Extensors
,”
Connect. Tissue Res.
,
7
, pp.
177
183
.
10.
Tipton
,
C. M.
,
Vailas
,
A. C.
, and
Matthes
,
R. D.
,
1986
, “
Experimental Studies on the Influences of Physical Activity on Ligaments, Tendons, and Joint: A Brief Review
,”
Acta Med. Scand., Suppl.
,
711
, pp.
157
168
.
11.
Yamamoto
,
N.
,
Ohno
,
K.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1993
, “
Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
115
, pp.
23
28
.
12.
Hayashi, K., Yamamoto, N., and Yasuda, K., 1996, “Response of Knee Joint Tendons and Ligaments to Mechanical Stress,” Biomechanics-Functional Adaptation and Remodeling, ed. by K. Hayashi, A. Kamiya, and K. Ono, Springer-Verlag, Tokyo, pp. 185–212.
13.
Keira
,
M.
,
Yasuda
,
K.
,
Kaneda
,
K.
,
Yamamoto
,
N.
, and
Hayashi
,
K.
,
1996
, “
Mechanical Properties of the Anterior Cruciate Ligament Chronically Relaxed by Elevation of the Tibial Insertion
,”
J. Orthop. Res.
,
14
, pp.
157
166
.
14.
Majima
,
T.
,
Yasuda
,
K.
,
Fujii
,
T.
,
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Kaneda
,
K.
,
1996
, “
Biomechanical Effects of Stress Shielding of the Rabbit Patellar Tendon Depend on the Degree of Stress Reduction
,”
J. Orthop. Res.
,
14
, pp.
377
383
.
15.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
2000
, “
Effects of Stress Shielding on the Transverse Mechanical Properties of Rabbit Patellar Tendons
,”
ASME J. Biomech. Eng.
,
122
, pp.
608
613
.
16.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1996
, “
Effects of Restressing on the Mechanical Properties of Stress-Shielded Patellar Tendons in Rabbits
,”
ASME J. Biomech. Eng.
,
118
, pp.
216
220
.
17.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Hayashi
,
F.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1999
, “
Biomechanical Studies of the Rabbit Patellar Tendon After Removal of Its One-Fourth or a Half
,”
ASME J. Biomech. Eng.
,
121
, pp.
323
329
.
18.
Hannafin
,
J. A.
,
Arnoczky
,
S. P.
,
Hoonjan
,
A.
, and
Torzilli
,
P. A.
,
1995
, “
Effect of Stress Deprivation and Cyclic Tensile Loading on the Material and Morphologic Properties of Canine Flexor Digitorum Profundus Tendons: An in Vitro Study
,”
J. Orthop. Res.
,
13
, pp.
907
914
.
19.
Yamamoto
,
E.
,
Iwanaga
,
W.
,
Miyazaki
,
H.
, and
Hayashi
,
K.
,
2002
, “
Effects of Static Stress on the Mechanical Properties of Cultured Collagen Fascicles from Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
124
, pp.
85
93
.
20.
Kastelic
,
J.
,
Galeski
,
A.
, and
Baer
,
E.
,
1978
, “
The Multicomposite Structure of Tendon
,”
Connect. Tissue Res.
,
6
, pp.
11
23
.
21.
Haut
,
R. C.
,
1985
, “
The Effects of a Lathyritic Diet on the Sensitivity of Tendon to Strain Rate
,”
ASME J. Biomech. Eng.
,
107
, pp.
166
174
.
22.
Derwin
,
K. A.
, and
Soslowsky
,
L. J.
,
1999
, “
A Quantitative Investigation of Structure-Function Relationships in a Tendon Fascicle Model
,”
ASME J. Biomech. Eng.
,
121
, pp.
598
604
.
23.
Derwin
,
K. A.
,
Soslowsky
,
L. J.
,
Kimura
,
J. H.
, and
Plaas
,
A. H.
,
2001
, “
Proteoglycans and Glycosaminoglycan Fine Structure in the Mouse Tail Tendon Fascicle
,”
J. Orthop. Res.
,
19
, pp.
269
277
.
24.
Freshney, R. I., 1994, Culture of Animal Cells-A Manual of Basic Technique, Third Edition, Wiley-Liss, New York.
25.
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Hayashi
,
F.
,
1992
, “
In Vivo Measurement of Tension in the Rabbit Patellar Tendon
,”
Trans. Jpn. Soc. Mech. Eng.
,
58
, pp.
1142
1147
.
26.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles from the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
121
, pp.
124
131
.
27.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1982
, “
A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement
,”
ASME J. Biomech. Eng.
,
104
, pp.
125
128
.
28.
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Grood
,
E. S.
,
Holden
,
J. P.
,
Feder
,
S. M.
, and
Butler
,
D. L.
,
1996
, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goads
,”
J. Biomech.
,
29
, pp.
557
561
.
29.
Rupert
,
M.
,
Grood
,
S.
,
Byczkowski
,
T.
, and
Levy
,
M.
,
1998
, “
Influence of Sensor Size on the Accuracy of In-Vivo Ligament and Tendon Force Measurement
,”
ASME J. Biomech. Eng.
,
120
, pp.
764
769
.
30.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1992
, “
Mechanical Properties of the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
114
, pp.
332
337
.
31.
Carano
,
A.
, and
Siciliani
,
G.
,
1996
, “
Effects of Continuous and Intermittent Forces on Human Fibroblasts in Vitro
,”
Eur. J. Orthod.
,
18
, pp.
19
26
.
32.
Banes
,
A. J.
,
Gilbert
,
J.
,
Taylor
,
D.
, and
Monbureau
,
O.
,
1985
, “
A New Vacuum-Operated Stress-Providing Instrument that Applies Static or Variable Duration Cyclic Tension or Compression to Cells in Vitro
,”
J. Cell. Sci.
,
75
, pp.
35
42
.
33.
Gathercole
,
L. J.
,
Keller
,
A.
, and
Shah
,
J. S.
,
1974
, “
The Periodic Wave Pattern in Native Tendon Collagen: Correlation of Polarizing with Scanning Electron Microscopy
,”
J. Microsc.
,
102
, pp.
95
105
.
You do not currently have access to this content.