This study carries out a detailed parameter study based on a nonlinear anisotropic finite-element model published previously. The aim of this study is to identify the stress-reducing influences from geometrical parameters such as stent height, valve diameter, and the nonuniform thickness of porcine aortic valves under static loading condition. The anisotropy of the valve is considered to be transversely isotropic with fibers oriented along the circumferential directions, which enables us to use a simple anisotropic constitutive model using uniaxial experimental data. The results showed that in general, higher stent height and smaller diameter combined with nonuniform thickness give rise to a much more reduced overall stress level. Although the absolute values of the peak stresses may be influenced by the detailed orientations of fibers, the trends of the stress variation with the geometrical factors seem to be qualitatively consistent within the parameter ranges considered.

1.
Jamieson
,
W. R. E.
,
Burr
,
L. H.
,
Munro
,
A. I.
, and
Miyagishima
,
R. T.
,
1998
, “
Carpenter-Edwards Standard Porcine Bioprosthesis: A 21-Year Experience
,”
Ann. Thorac. Surg.
,
66
, pp.
40
43
.
2.
Ghista
,
D. N.
, and
Reul
,
H.
,
1977
, “
Optimal Prosthetic Aortic Leaflet Valve; Design Parametric and Longevity Analysis: Development of the Avcothane-51 Leaflet Valve Based on the Optimal Design Analysis
,”
J. Biomech.
,
10
, pp.
313
324
.
3.
Christine, C. W., and Medland, I. C., 1982, “A Nonlinear Finite-Element Stress Analysis of Bioprosthetic Heart Valve,” In: Finite Element in Biomechanics, Gallagher, R. H., Simon, B. R., Johnson, P. C., and Gross, J. F. eds., Chichester, Wiley, pp. 153–179.
4.
Hamid
,
M. S.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
,
1985
, “
Finite-Element Evaluation of Stresses on Closed Leaflets of Bioprosthetic Heart Valves With Flexible Stent
,”
Finite Elem. Anal. Design
,
1
, pp.
213
225
.
5.
Hamid
,
M. S.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
,
1986
, “
Influence of Stent Height Upon Stresses on the Cusps of Closed Bioprosthetic Valves
,”
J. Biomech.
,
19
, pp.
759
769
.
6.
Rousseau
,
E. P. M.
,
Sauren
,
A. A. H. J.
,
van Hout
,
M. C.
, and
van Steenhoven
,
A. A.
,
1983
, “
Elastic and Viscoelastic Material Behavior of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissue
,”
J. Biomech.
,
16
, pp.
339
348
.
7.
Huang
,
X.
,
Black
,
M. M.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
,
1990
, “
Two-Dimensional Finite-Element Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
,
23
, pp.
753
762
.
8.
Krucinski
,
S.
,
Vesely
,
I.
, and
Dokainish
,
M. A.
,
1993
, “
Numerical Simulation of Leaflet Flexure in Bioprosthetic Heart Valves Mounted on Rigid and Expansible Stents
,”
J. Biomech.
,
26
, pp.
929
943
.
9.
Black
,
M. M.
,
Howard
,
I. C.
,
Huang
,
X.
, and
Patterson
,
E. A.
,
1991
, “
Three-Dimensional Finite Element Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
,
24
, pp.
793
801
.
10.
Patterson
,
E. A.
,
Howard
,
I. C.
, and
Thornton
,
M. A.
,
1996
, “
A Comparative Study of Linear and Nonlinear Simulations of the Leaflets in a Bioprosthetic Heart Valve During Cardiac Cycle
,”
J. of Medical Engineering and Technology
,
20
, pp.
95
108
.
11.
Thornton
,
M. A.
,
Howard
,
L. C.
, and
Patterson
,
E. A.
,
1997
, “
Three-Dimensional Stress Analysis of Polypropylene Leaflets for Prosthetic Heart Valves
,”
Med. Eng. Phys.
,
19
, pp.
588
597
.
12.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
,
1998
, “
Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry
,”
Ann. Biomed. Eng.
,
26
, pp.
534
545
.
13.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
,
1999
, “
Mechanisms of Aortic Root and Valve Incompetence in Aging: A Finite-Element Model
,”
J. Heart Valve Dis.
,
8
, pp.
149
159
.
14.
De Hart
,
J.
,
Cacciola
,
G.
,
Schreurs
,
P. J. G.
, and
Peters
,
G. W. M.
,
1998
, “
A Three-Dimensional Analysis of a Fiber-Reinforced Aortic Valve Prosthetics
,”
J. Biomech.
,
31
, pp.
629
638
.
15.
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
,
1999
, “
The Stress/Strain and Fatigue Behavior of Glutaraldehyde Preserved Heart-Valve Tissue
,”
J. Biomech.
,
10
, pp.
707
724
.
16.
Li
,
J.
,
Luo
,
X. Y.
, and
Kuang
,
Z. B.
,
2001
, “
A Nonlnear Anisotropic Model for Porcine Aortic Heart Valves
,”
J. Biomech.
,
34
, pp.
1279
1289
.
17.
Mavrilas
,
D.
, and
Missirlis
,
Y.
,
1991
, “
An Approach to the Optimization of Preparation of Bioprosthetic Heart Valves
,”
J. Biomech.
,
24
, pp.
331
339
.
18.
Mayne
,
A. S. D.
,
Christie
,
G. M.
,
Smaill
,
B. H.
,
Hunter
,
P. J.
, and
Barratt-Boyes
,
B. G.
,
1989
, “
An Assessment of the Mechanical Properties of Leaflets From Four Second-Generation Porcine Bioprosthese With Biaxial Testing Techniques
,”
J. Thorac. Cardiovasc. Surg.
,
98
, pp.
170
180
.
19.
Vesely
,
I.
,
1998
, “
The Role of Elastin in Aortic Valve Mechanics
,”
J. Biomech.
,
31
, pp.
115
123
.
20.
Vesely
,
I.
, and
Noseworthy
,
R.
,
1992
, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
,
25
, pp.
101
113
.
21.
Vesely
,
I.
, and
Lozon
,
A.
,
1993
, “
Natural Preload of Aortic Valve Leaflet Components During Glutaraldehyde Fixation: Effects on Tissue Mechanics
,”
J. Biomech.
,
26
, pp.
121
131
.
22.
Vesely
,
I.
,
Boughner
,
D. R.
, and
Leesondietrich
,
J.
,
1995
, “
Bioprosthetic Valve Tissue Viscoelasticity-Implications on Accelerated Pulse Duplicator Testing
,”
Ann. Thorac. Surg.
,
60
, pp.
S379
S379
.
23.
Purinya
,
B.
, and
Kasyanov
,
V.
,
1994
, “
Biomechanical and Structural Properties of the Explanted Bioprosthetic Valve Leaflets
,”
J. Biomech.
,
27
, pp.
1
11
.
24.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000a
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde Treated Aortic Valve Cusp: Part I-Experimental Results
,”
ASME J. Biomech. Eng.
,
122
, pp.
23
30
.
25.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000b
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde Treated Aortic Valve Cusp: Part II-A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
, pp.
327
335
.
26.
Sauran
,
A. A. H.
,
Kuijpers
,
W.
,
van Steenhoven
,
A. A.
, and
Veldpaus
,
F. E.
,
1980
, “
Aortic Valve Histology and Its Relation With Mechanics-Preliminary Report
,”
J. Biomech.
,
13
, pp.
97
104
.
27.
Clark
,
R. E.
, and
Finke
,
E. H.
,
1974
, “
Scanning and Light Microscopy of Human Aortic Leaflets in Stressed and Relaxed States
,”
J. Thorac. Cardiovasc. Surg.
,
67
, pp.
792
803
.
28.
Milano
,
A.
,
Bortolotti
,
U.
,
Talenti
,
E.
,
Valfre
,
C.
,
Arbustini
,
E.
,
Valente
,
M.
,
Mazzucco
,
A.
,
Gallucci
,
V.
, and
Thiene
,
G.
,
1984
, “
Calcific Degeneration as the Main Cause of Procine Bioprothetic Valve Faiture
,”
Am. J. Cardiol.
,
53
, pp.
1066
1070
.
29.
Carpentier
,
A.
,
Dubost
,
C.
,
Lane
,
E.
,
Nashef
,
A.
,
Carpentier
,
S.
,
Relland
,
J.
,
Deloche
,
A.
,
Fabiani
,
J. N.
,
Chauvaud
,
S.
, and
Chauvaud
,
S.
,
1982
, “
Continuing Improvements in Valvular Bioprostheses
,”
J. Thorac. Cardiovasc. Surg.
,
83
, pp.
27
42
.
30.
Makhijani
,
V. B.
,
Yang
,
H. Q.
,
Dionne
,
P. J.
, and
Thubrikar
,
M. J.
,
1997
, “
Three-Dimensional Coupled Fluid-Structure Simulation of Pericardical Bioprosthetic Aortic Valve Function
,”
Peric. Aortic Valve Simulation
,
43
, pp.
387
392
.
You do not currently have access to this content.