Tendons are exposed to complex loading scenarios that can only be quantified by mathematical models, requiring a full knowledge of tendon mechanical properties. This study measured the anisotropic, nonlinear, elastic material properties of tendon. Previous studies have primarily used constant strain-rate tensile tests to determine elastic modulus in the fiber direction. Data for Poisson’s ratio aligned with the fiber direction and all material properties transverse to the fiber direction are sparse. Additionally, it is not known whether quasi-static constant strain-rate tests represent equilibrium elastic tissue behavior. Incremental stress-relaxation and constant strain-rate tensile tests were performed on sheep flexor tendon samples aligned with the tendon fiber direction or transverse to the fiber direction to determine the anisotropic properties of toe-region modulus E0, linear-region modulus (E), and Poisson’s ratio (ν). Among the modulus values calculated, only fiber-aligned linear-region modulus E1 was found to be strain-rate dependent. The E1 calculated from the constant strain-rate tests were significantly greater than the value calculated from incremental stress-relaxation testing. Fiber-aligned toe-region modulus E10=10.5±4.7MPa and linear-region modulus E1=34.0±15.5MPa were consistently 2 orders of magnitude greater than transverse moduli (E20=0.055±0.044MPa,E2=0.157±0.154MPa). Poisson’s ratio values were not found to be rate-dependent in either the fiber-aligned (ν12=2.98±2.59, n=24) or transverse (ν21=0.488±0.653, n=22) directions, and average Poisson’s ratio values in the fiber-aligned direction were six times greater than in the transverse direction. The lack of strain-rate dependence of transverse properties demonstrates that slow constant strain-rate tests represent elastic properties in the transverse direction. However, the strain-rate dependence demonstrated by the fiber-aligned linear-region modulus suggests that incremental stress-relaxation tests are necessary to determine the equilibrium elastic properties of tendon, and may be more appropriate for determining the properties to be used in elastic mathematical models.

1.
Matyas
,
J. R.
,
Anton
,
M. G.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
1995
, “
Stress Governs Tissue Phenotype at the Femoral Insertion of the Rabbit Mcl
,”
J. Biomech.
,
28
(
2
), pp.
147
157
.
2.
Woo, S. L.-Y., An, K.-N., Frank, C. B., Livesay, G. A., Ma, C. B., Zeminski, J., Wayne, J. S., and Myers, B. S., 2000, “Anatomy, Biology, and Biomechanics of Tendon and Ligament,” Orthopaedic Basic Science, J. A. Buckwalter, Einhorn, T. A., and Simon, S. R., eds., American Academy of Orthopaedic Surgeons, 2, pp. 581–616.
3.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.
4.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
2000
, “
Effects of Stress Shielding on the Transverse Mechanical Properties of Rabbit Patellar Tendons
,”
J. Biomech. Eng.
,
122
(
6
), pp.
608
614
.
5.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Bey
,
M. J.
, and
Elliott
,
D. M.
,
2002
, “
Poisson’s Ratio and Modulus for Tendon Transverse and Longitudinal Fiber Orientations
,”
Transactions of the Orthopaedic Research Society
,
26
, p.
243
243
.
6.
Stabile, K. J., Pfaeffle, H. J., Weiss, J. A., Gabriel, M. T., Tomaino, M. M., and Fischer, K. J., 2001, “Longitudinal and Transverse Mechanical Properties of the Interosseous Ligament of the Forearm,” Proceedings of the 2001 Bioengineering Conference, ASME BED, 50, pp. 363–364.
7.
Weiss, J. A., Bonifasi-Lista, C., and Gardner, J. C., 2001, “Determination of Ligament Shear Properties Using a Finite Element Parameter Estimation Technique,” Proceedings of the 2001 ASME Bioengineering Conference, ASME-BED, 50, pp. 43–44.
8.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
,
2001
, “
Regional Material Properties of the Human Hip-Joint Capsule Ligaments
,”
J. Orthop. Res.
,
19
(
3
), pp.
359
364
.
9.
Woo
,
S. L.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
,
1990
, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
,
8
(
5
), pp.
712
721
.
10.
Danto
,
M. I.
, and
Woo
,
S. L.
,
1993
, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
,
11
(
1
), pp.
58
67
.
11.
Hubbard
,
R. P.
, and
Soutas-Little
,
R. W.
,
1984
, “
Mechanical Properties of Human Tendon and Their Age Dependence
,”
J. Biomech. Eng.
,
106
, pp.
144
150
.
12.
Haut
,
T. L.
, and
Haut
,
R. C.
,
1997
, “
The State of Tissue Hydration Determines the Strain-Rate-Sensitive Stiffness of Human Patellar Tendon
,”
J. Biomech.
,
30
(
1
), pp.
79
81
.
13.
Noyes
,
F. R.
,
Delucas
,
J. L.
, and
Torvik
,
P. J.
,
1974
, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Jt. Surg., Am. Vol.
,
56
(
2
), pp.
236
253
.
14.
Wren
,
T. A.
,
Yerby
,
S. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
2001
, “
Mechanical Properties of the Human Achilles Tendon
,”
Clinical Biomechanics (Bristol, Avon)
,
16
(
3
), pp.
245
251
.
15.
Guilak
,
F.
,
Ratcliffe
,
A.
,
Lane
,
N.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
,
1994
, “
Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis
,”
J. Orthop. Res.
,
12
(
4
), pp.
474
484
.
16.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
,
1999
, “
Tensile Properties of Articular Cartilage are Altered by Menisectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
(
4
), pp.
503
508
.
17.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.
18.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
(
10
), pp.
1125
1130
.
19.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.
20.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.
21.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1994
, “
Mechanical Properties of Canine Articular Cartilage are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
12
(
4
), pp.
451
463
.
22.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.
23.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
,
2002
, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.
24.
Silver
,
F. H.
,
Christiansen
,
D. L.
,
Snowhill
,
P. B.
, and
Chen
,
Y.
,
2000
, “
Role of Storage on Changes in the Mechanical Properties of Tendon and Self-Assembled Collagen Fibers
,”
Connect. Tissue Res.
,
41
(
2
), pp.
155
164
.
25.
Elliott, D. M., Leroux, M. A., Laursen, T. A., and Setton, L. A., 1997, “Formulation of a Continuum Anisotropic Model for the Annulus Fibrosus in Tension,” Advances in Bioengineering, ASME BED, 36, pp. 165–166.
26.
Bey
,
M. J.
,
Song
,
H. K.
,
Wehrli
,
F. W.
, and
Soslowsky
,
L. J.
,
2002
, “
A Noncontact, Nondestructive Method for Quantifying Intratissue Deformations and Strains
,”
J. Biomech. Eng.
,
124
(
2
), pp.
253
258
.
27.
Fung, Y. C., 1972, “Stress-Strain-History Relations of Soft Tissues in Simple Elongation,” Biomechanics: Its Foundations and Objectives, Y. C. Fung, Perrone, N., and Anliker, M., eds., Prentice-Hall: Englewood Cliffs, NJ, pp. 181–208.
28.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
J. Biomech. Eng.
,
124
, pp.
223
228
.
29.
Viidik
,
A.
,
1973
, “
Functional Properties of Collagenous Tissues
,”
International Review of Connective Tissue Research
6
, pp.
127
215
.
30.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
24
), pp.
2690
2701
.
31.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
(
7
), pp.
943
950
.
32.
Eshel
,
H.
, and
Lanir
,
Y.
,
2001
, “
Effects of Strain Level and Proteoglycan Depletion on Preconditioning and Viscoelastic Responses of Rat Dorsal Skin
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
164
172
.
You do not currently have access to this content.