Excessive mechanical loading can lead to matrix damage and chondrocyte death in articular cartilage. Previous studies on chondral and osteochondral explants have not clearly distinguished to what extent the degree and the distribution of cell death are dependent on the presence of an underlying layer of bone. The current study hypothesized that the presence of underlying bone would decrease the amount of matrix damage and cell death. Chondral and osteochondral explants were loaded to 30 MPa at a high rate of loading (∼600 MPa/s) or at a low rate of loading (30 MPa/s). After 24 hours in culture, matrix damage was assessed by the total length and average depth of surface fissures. The explants were also sectioned and stained for cell viability in the various layers of the cartilage. More matrix damage was documented in chondral than osteochondral explants for each rate of loading experiment. The total amount of cell death was also less in osteochondral explants than chondral explants. The presence of underlying bone significantly reduced the extent of cell death in all zones in low rate of loading tests. The percentage of cell death was also reduced in the intermediate zone and deep zones of the explant by the presence of the underlying bone for a high rate of loading. This study indicated that the presence of underlying bone significantly limited the degree of matrix damage and cell death, and also affected the distribution of dead cells through the explant thickness. These data may have relevance to the applicability of experimental data from chondral explants to the in situ condition.

1.
Brandt
,
K. D.
,
Mankin
,
H. J.
, and
Shulman
,
L. E.
,
1986
, “
Workshop on Etiopathogenesis of Osteoarthritis
,”
J. Rheumatol.
,
13
, pp.
1126
1160
.
2.
Blanco
,
F. J.
,
Guitian
,
R.
,
Vazquez-Martul
,
E.
,
de Toro
,
F. J.
, and
Galdo
,
F.
, 1998, “Osteoarthritis Chondrocytes Die by Apoptosis: A Possible Pathway for Osteoarthritis Pathology,” Arthritis and Rheumatology, 41, pp. 284–289.
3.
Buckwater
,
J. A.
,
1995
, “
Osteoarthritis and Articular Cartilage Use, Disuse, and Abuse: Experimental Studies
,”
J. Rheumatol., Suppl.
,
43
, pp.
13
15
.
4.
Simon
,
W. H.
,
Richardson
,
S.
,
Herman
,
W.
,
Parson
,
J. R.
, and
Lane
,
J.
,
1976
, “
Long-Term Effects of Chondrocyte Death on Rabbit Articular Cartilage In Vivo
,”
J. Bone Jt. Surg., Am. Vol.
,
58
, pp.
517
526
.
5.
Kim
,
H. A.
,
Lee
,
Y. J.
,
Seong
,
S. C.
,
Choe
,
K. W.
, and
Song
,
Y. W.
,
2000
, “
Apoptotic Chondrocyte Death in Human Osteoarthritis
,”
J. Rheumatol.
,
27
(
2
), pp.
455
62
.
6.
States, J. D., 1970, “Traumatic Arthritis—A Medical and Legal Dilemma,” Proceedings of the 14th Annual Conference of the American Association for Automotive Medicine, pp. 21–28.
7.
Wright
,
V.
,
1990
, “
Post-Traumatic Osteoarthritis—A Medico-Legal Minefield
,”
Br. J. Rheumatol.
,
29
, pp.
474
478
.
8.
Newberry
,
W. N.
,
Mackenzie
,
C. D.
, and
Haut
,
R. C.
,
1998
, “
Blunt Impact Causes Changes in Bone and Cartilage in a Regularly Exercised Animal Model
,”
J. Orthop. Res.
,
16
, pp.
348
354
.
9.
Thompson
,
R. C.
,
Oegema
,
T. R.
,
Lewis
,
J. L.
, and
Wallace
,
L.
,
1991
, “
Osteoarthritic Changes After Acute Transarticular Load: An Animal Model
,”
J. Bone Jt. Surg.
,
73A
, pp.
990
1001
.
10.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
, Jr.,
J.
, and
Helfet
,
D. L.
,
1999
, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
J. Biomech. Eng.
,
121
, pp.
433
441
.
11.
Quinn
,
T. M.
,
Allen
,
R. G.
,
Schalet
,
B. J.
,
Perumbuli
,
P.
, and
Hunziker
,
E. B.
,
2001
, “
Matrix and Cell Injury Due to Sub-Impact Loading of Adult Bovine Articular Cartilage Explants: Effects of Strain Rate and Peak Stress
,”
J. Orthop. Res.
,
19
, pp.
242
249
.
12.
Jeffery
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
,
1995
, “
Matrix Damage and Chondrocyte Viability Following a Single Blunt Impact Load on Articular Cartilage
,”
Arch. Biochem. Biophys.
,
322
, pp.
87
96
.
13.
Clements
,
K. M.
,
Bee
,
Z. C.
,
Crossingham
,
G. V.
,
Adams
,
M. A.
, and
Shariff
,
M.
,
2001
, “
How Severe must Repetitive Loading be to Kill Chondrocytes in Articular Cartilage?
Osteoarthritis Cartilage
,
9
, pp.
499
507
.
14.
Ewers
,
B. J.
,
Dvoracek-Driskna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
,
2000
, “
The Extent of Matrix Damage and Chondrocyte Death in Mechanically Traumatized Articular Cartilage Explants Depends on Rate of Loading
,”
J. Orthop. Res.
,
19
, pp.
779
784
.
15.
Finlay
,
J. B.
, and
Repo
,
R. U.
,
1978
, “
Cartilage Impact In Vitro: Effect of Bone and Cement
,”
J. Biomech.
,
11
(
8–9
), pp.
379
88
.
16.
Grubbs
,
F. E.
, and
Beck
,
G.
,
1972
, “
Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations
,”
Technometrics
,
14
, pp.
847
854
.
17.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1998
, “
Impact-Induced Fissuring of Articular Cartilage: An Investigation of Failure Criteria
,”
J. Biomech. Eng.
,
120
, pp.
181
187
.
18.
Repo
,
R. U.
, and
Finlay
,
J. B.
,
1977
, “
Survival of Articular Cartilage after Controlled Impact
,”
J. Bone Jt. Surg., Am. Vol.
,
59
, pp.
1068
1076
.
19.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
21
.
20.
Mow
,
V. C.
,
Kuei
,
S.
,
Lai
,
W.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
21.
DiSilvestro
,
M. R.
,
Qilang
,
Z.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. F.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
J. Biomech. Eng.
,
123
, pp.
191
197
.
22.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
23.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
, pp.
1
12
.
You do not currently have access to this content.