Abstract

Autonomous vehicles (AV) are designed to operate in a specific operational context (OC), and the adaptability of the vehicle's architecture to its OC is considered a significant success criterion of the design. AV design projects are rarely started from scratch and are often based on reference architectures. As such, the reference architecture must be modified and adapted to the OC. The current literature on engineering change (EC) propagation does not provide a method to identify and anticipate the impact of OC changes on the AV reference architecture. This paper proposes a two-step method for OC change propagation: (1) analyzing the direct impact of OC change and (2) evaluate the probabilities of indirect change propagation. The direct impact is assessed following a propagation path based upon a model mapping between an OC ontology, operational situations, and functional chains (FCs). The effects of functional chain changes on the AV components are analyzed and evaluated by domain experts with types of changes and associated probabilities. A Bayesian network (BN) is proposed to calculate the probabilities of indirect change propagation between component types of changes (ToCs). The method’s applicability and efficiency are validated on a real case design of AV architecture where the probabilities of the system components undergoing types of changes are evaluated.

References

1.
SAE, (On Road Automated Vehicle Standards Committee)
,
2014
, “
Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems
,”
Technical Report J3016_201401
.
2.
Bagschik
,
G.
,
Menzel
,
T.
, and
Maurer
,
M.
,
2018
, “
Ontology Based Scene Creation for the Development of Automated Vehicles
,”
2018 IEEE Intelligent Vehicles Symposium (IV)
, pp.
1813
1820
.
3.
Ulbrich
,
S.
,
Nothdurft
,
T.
,
Maurer
,
M.
, and
Hecker
,
P.
,
2014
, “
Graph-Based Context Representation, Environment Modeling and Information Aggregation for Automated Driving
,”
2014 IEEE Intelligent Vehicles Symposium Proceedings
, pp.
541
547
.
4.
Damak
,
Y.
,
2020
, “
Operational Context-Based Design and Architecting of Autonomous Vehicles
,”
Ph.D. thesis
,
Université Paris-Saclay
, Centrale Supélec, Laboratoire de Genie Industriel.
5.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
6.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2011
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
.
7.
Reddi
,
K. R.
, and
Moon
,
Y. B.
,
2009
, “
A Framework for Managing Engineering Change Propagation
,”
Int. J. Innov. Learn.
,
6
(
5
), p.
461
.
8.
Hamraz
,
B.
,
Caldwell
,
N. H. M.
, and
John Clarkson
,
P.
,
2012
, “
A Multidomain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100905
.
9.
Lee
,
J.
, and
Hong
,
Y. S.
,
2017
, “
Bayesian Network Approach to Change Propagation Analysis
,”
Res. Eng. Des.
,
28
(
4
), pp.
437
455
.
10.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
11.
Cheng
,
H.
, and
Chu
,
X.
,
2012
, “
A Network-Based Assessment Approach for Change Impacts on Complex Product
,”
J. Intell. Manuf.
,
23
(
4
), pp.
1419
1431
.
12.
Ollinger
,
G. A.
, and
Stahovich
,
T. F.
,
2004
, “
RedesignIT—A Model-Based Tool for Managing Design Changes
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
208
216
.
13.
Xie
,
Y.
, and
Ma
,
Y.
,
2016
, “
Well-Controlled Engineering Change Propagation via a Dynamic Inter-Feature Association Map
,”
Res. Eng. Des.
,
27
(
4
), pp.
311
329
.
14.
Yang
,
F.
, and
Duan
,
G.
,
2012
, “
Developing a Parameter Linkage-Based Method for Searching Change Propagation Paths
,”
Res. Eng. Des.
,
23
(
4
), pp.
353
372
.
15.
Fei
,
G.
,
Gao
,
J.
,
Owodunni
,
O.
, and
Tang
,
X.
,
2011
, “
A Method for Engineering Design Change Analysis Using System Modelling and Knowledge Management Techniques
,”
Int. J. Comput. Integr. Manuf.
,
24
(
6
), pp.
535
551
.
16.
Ahmad
,
N.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2013
, “
Change Impact on a Product and Its Redesign Process: A Tool for Knowledge Capture and Reuse
,”
Res. Eng. Des.
,
24
(
3
), pp.
219
244
.
17.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
.
18.
Morkos
,
B.
,
Mathieson
,
J.
, and
Summers
,
J. D.
,
2014
, “
Comparative Analysis of Requirements Change Prediction Models: Manual, Linguistic, and Neural Network
,”
Res. Eng. Des.
,
25
(
2
), pp.
139
156
.
19.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
20.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
21.
Hamraz
,
B.
,
Hisarciklilar
,
O.
,
Rahmani
,
K.
,
Wynn
,
D. C.
,
Thomson
,
V.
, and
Clarkson
,
P. J.
,
2013
, “
Change Prediction Using Interface Data
,”
Concurr. Eng.
,
21
(
2
), pp.
141
154
.
22.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
).
23.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2014
, “The Function-Behaviour-Structure Ontology of Design,”
An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations
,
A.
Chakrabarti
, and
L. T. M.
Blessing
, eds.,
Springer
,
London
, pp.
263
283
.
24.
Crawley
,
E.
,
de Weck
,
O.
,
Eppinger
,
S.
,
Magee
,
C.
,
Moses
,
J.
,
Seering
,
W.
,
Schindall
,
J.
,
Wallace
,
D.
, and
Whitney
,
D.
,
2004
, “
The Influence of Architecture in Engineering Systems
,”
Engineering Systems Monograph, 2006
.
25.
Dey
,
A. K.
,
2001
, “
Understanding and Using Context
,”
Pers. Ubiquitous Comput.
,
5
(
1
), pp.
4
7
.
26.
Damak
,
Y.
,
Leroy
,
Y.
,
Trehard
,
G.
, and
Jankovic
,
M.
,
2020
, “
Operational Context-Based Design Method of Autonomous Vehicles Logical Architectures
,”
2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)
, pp.
439
444
.
27.
Roques
,
P.
,
2016
, “
MBSE With the ARCADIA Method and the Capella Tool
,”
8th European Congress on Embedded Real Time Software and Systems (ERTS 2016)
,
Toulouse, France
.
28.
Chapin
,
N.
,
Hale
,
J. E.
,
Khan
,
K. M.
,
Ramil
,
J. F.
, and
Tan
,
W.-G.
,
2001
, “
Types of Software Evolution and Software Maintenance
,”
J. Softw. Maint. Evol.: Res. Pract.
,
13
(
1
), pp.
3
30
.
You do not currently have access to this content.