0
Research Papers

Mixed Convection in an Inclined Nanofluid Filled-Cavity Saturated With a Partially Layered Porous Medium

[+] Author and Article Information
Abdelraheem M. Aly

Department of Mathematics,
Faculty of Science,
King Khalid University,
P. O. Box 3236,
Abha, Saudi Arabia;
Department of Mathematics,
Faculty of Science,
South Valley University,
P. O. Box 83523,
Qena, Egypt
e-mails: ababdallah@kku.edu.sa;
abdelreheam.abdallah@sci.svu.edu.eg

Z. A. S. Raizah

Department of Mathematics,
Faculty of Science,
King Khalid University,
P. O. Box 3236,
Abha, Saudi Arabia

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received September 1, 2018; final manuscript received December 10, 2018; published online March 25, 2019. Assoc. Editor: Aaron P. Wemhoff.

J. Thermal Sci. Eng. Appl 11(4), 041002 (Mar 25, 2019) (9 pages) Paper No: TSEA-18-1430; doi: 10.1115/1.4042352 History: Received September 01, 2018; Revised December 10, 2018

The contribution of the current study is to investigate the mixed convection in an inclined nanofluid filled cavity saturated with a partially layered non-Darcy porous medium. Moreover, due to the advantage of the particle-based methods, we presented the improved version of an incompressible smoothed particle hydrodynamics (ISPH) method. The current ISPH method was improved in boundary conditions treatment using renormalization kernel function. In the current investigation, we assumed that the inclined cavity is filled with a Cu-water nanofluid. The upper half of the cavity is saturated with a non-Darcy porous medium. Here, one domain approach is used for coupling the nanofluid and the porous medium layer. The cooled top wall of the cavity is carrying a tangential unit velocity and the bottom wall is heated. The other two wall sides are adiabatic at zero velocity. Here, we investigated the effects of the Richardson parameter Ri0.0001100, Darcy parameter Da 105102, an inclination angle α090deg and a various solid volume fraction ϕ00.05 on the heat transfer of a Cu-water nanofluid. The obtained results showed that the average Nusselt number decreases as the Richardson number increases. An addition of 1–5% Cu nanoparticles slightly increased the overall heat transfer rate.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cummins, S. J. , and Rudman, M. , 1999, “ An SPH Projection Method,” J. Comput. Phys., 152(2), pp. 584–607. [CrossRef]
Yildiz, M. , Rook, R. A. , and Suleman, A. , 2009, “ SPH With the Multiple Boundary Tangent Method,” Int. J. Numer. Methods Eng., 77(10), pp. 1416–1438. [CrossRef]
Shadloo, M. S. , Zainali, A. , Sadek, S. H. , and Yildiz, M. , 2011, “ Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies,” Comput. Methods Appl. Mech. Eng., 200(9–12), pp. 1008–1020. [CrossRef]
Shadloo, M. S. , Zainali, A. , Yildiz, M. , and Suleman, A. , 2012, “ A Robust Weakly Compressible SPH Method and Its Comparison With an Incompressible SPH,” Int. J. Numer. Methods Eng., 89(8), pp. 939–956. [CrossRef]
Zainali, A. , Tofighi, N. , Shadloo, M. S. , and Yildiz, M. , 2013, “ Numerical Investigation of Newtonian and Non-Newtonian Multiphase Flows Using ISPH Method,” Comput. Methods Appl. Mech. Eng., 254, pp. 99–113. [CrossRef]
Rahmat, A. , and Yildiz, M. , 2018, “ A Multiphase ISPH Method for Simulation of Droplet Coalescence and Electro-Coalescence,” Int. J. Multiphase Flow, 105, pp. 32–44. [CrossRef]
Khayyer, A. , Gotoh, H. , and Shao, S. , 2008, “ Corrected Incompressible SPH Method for Accurate Water-Surface Tracking in Breaking Waves,” Coastal Eng., 55(3), pp. 236–250. [CrossRef]
Khayyer, A. , Gotoh, H. , and Shao, S. , 2009, “ Enhanced Predictions of Wave Impact Pressure by Improved Incompressible SPH Methods,” Appl. Ocean Res., 31(2), pp. 111–131. [CrossRef]
Asai, M. , Aly, A. M. , Sonoda, Y. , and Sakai, Y. , 2012, “ A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition,” J. Appl. Math., 2012, p. 139583. [CrossRef]
Aly, A. M. , Asai, M. , and Sonoda, Y. , 2011, “ Simulation of Free Falling Rigid Body Into Water by a Stabilized Incompressible SPH Method,” Ocean Syst. Eng., 1(3), pp. 207–222. [CrossRef]
Aly, A. M. , Asai, M. , and Sonda, Y. , 2013, “ Modelling of Surface Tension Force for Free Surface Flows in ISPH Method,” Int. J. Numer. Methods Heat Fluid Flow, 23(3), pp. 479–498. [CrossRef]
Aly, A. M. , and Ahmed, S. E. , 2014, “ An Incompressible Smoothed Particle Hydrodynamics Method for Natural/mixed Convection in a Non-Darcy Anisotropic Porous Medium,” Int. J. Heat Mass Transfer, 77, pp. 1155–1168. [CrossRef]
Aly, A. M. , 2015, “ Modeling of Multi-Phase Flows and Natural Convection in a Square Cavity Using an Incompressible Smoothed Particle Hydrodynamics,” Int. J. Numer. Methods Heat Fluid Flow, 25(3), pp. 513–533. [CrossRef]
Aly, A. M. , 2016, “ Double-Diffusive Natural Convection in an Enclosure Including/Excluding Sloshing Rod Using a Stabilized ISPH Method,” Int. Commun. Heat Mass Transfer, 73, pp. 84–99. [CrossRef]
Aly, A. M. , and Raizah, Z. A. , 2016, “ Double-Diffusive Natural Convection in an Enclosure Filled With Nanofluid Using ISPH Method,” Alexandria Eng. J., 55(4), pp. 3037–3052. [CrossRef]
Aly, A. M. , Asai, M. , and Chamkha, A. J. , 2015, “ Analysis of Unsteady Mixed Convection in Lid-Driven Cavity Included Circular Cylinders Motion Using an Incompressible Smoothed Particle Hydrodynamics Method,” Int. J. Numer. Methods Heat Fluid Flow, 25(8), pp. 2000–2021. [CrossRef]
Aly, A. M. , Chamkha, A. J. , Lee, S.-W. , and Al-Mudhaf, A. F. , 2016, “ On Mixed Convection in an Inclined Lid-Driven Cavity With Sinusoidal Heated Walls Using the ISPH Method,” Comput. Therm. Sci.: An Int. J., 8(4), pp. 337–354. [CrossRef]
Ramadhyani, S. , and Viskanta, R. , 1987, “ Natural Convection Flow and Heat Transfer Between a Fluid Layer and a Porous Layer Inside a Rectangular Enclosure,” ASME J. Heat Transfer, 109(2), pp. 363–370. http://user.engineering.uiowa.edu/~becker/documents.dir/jhr1987.pdf
Beckermann, C. , and Viskanta, R. , 1988, “ Natural Convection Solid/Liquid Phase Change in Porous Media,” Int. J. Heat Mass Transfer, 31(1), pp. 35–46.
Singh, A. , Paul, T. , and Thorpe, G. , 1999, “ Natural Convection Due to Heat and Mass Transfer in a Composite System,” Heat Mass Transfer, 35(1), pp. 39–48. [CrossRef]
Hamimid, S. , Guellal, M. , Amroune, A. , and Zeraibi, N. , 2012, “ Effect of a Porous Layer on the Flow Structure and Heat Transfer in a Square Cavity,” Fluid Dyn. Mater. Process., 8(1), pp. 69–90. http://www.techscience.com/doi/10.3970/fdmp.2011.008.069.pdf
Chandran, P. , Sacheti, N. C. , and Singh, A. K. , 2013, “ A Numerical Investigation of a Buoyancy Driven Flow in a Semi-Porous Cavity: Comparative Effects of Ramped and Isothermal Wall Conditions,” J. Hydrol. Hydromech., 61(2), pp. 103–111. [CrossRef]
Al-Zamily, A. M. J. , 2017, “ Analysis of Natural Convection and Entropy Generation in a Cavity Filled With Multi-Layers of Porous Medium and Nanofluid With a Heat Generation,” Int. J. Heat Mass Transfer, 106, pp. 1218–1231. [CrossRef]
Astanina, M. S. , Sheremet, M. A. , Oztop, H. F. , and Abu-Hamdeh, N. , 2018, “ Mixed Convection of Al2O3-Water Nanofluid in a Lid-Driven Cavity Having Two Porous Layers,” Int. J. Heat Mass Transfer, 118(Suppl. C), pp. 527–537. [CrossRef]
Sheikholeslami, M. , and Rokni, H. B. , 2018, “ Magnetic Nanofluid Flow and Convective Heat Transfer in a Porous Cavity Considering Brownian Motion Effects,” Phys. Fluids, 30(1), p. 012003. [CrossRef]
Sheikholeslami, M. , and Shamlooei, M. , 2017, “ Convective Flow of Nanofluid Inside a Lid Driven Porous Cavity Using CVFEM,” Phys. B: Condens. Matter, 521, pp. 239–250. [CrossRef]
Sheikholeslami, M. , Li, Z. , and Shamlooei, M. , 2018, “ Nanofluid MHD Natural Convection Through a Porous Complex Shaped Cavity Considering Thermal Radiation,” Phys. Lett. A, 382(24), pp. 1615–1632. [CrossRef]
Yaghoubi Emami, R. , Siavashi, M. , and Shahriari Moghaddam, G. , 2018, “ The Effect of Inclination Angle and Hot Wall Configuration on Cu-Water Nanofluid Natural Convection Inside a Porous Square Cavity,” Adv. Powder Technol., 29(3), pp. 519–536. [CrossRef]
Raizah, Z. A. S. , Aly, A. M. , and Ahmed, S. E. , 2018, “ Natural Convection Flow of a Power-Law Non-Newtonian Nanofluid in Inclined Open Shallow Cavities Filled With Porous Media,” Int. J. Mech. Sci., 140, pp. 376–393. [CrossRef]
Bilgen, E. , and Oztop, H. , 2005, “ Natural Convection Heat Transfer in Partially Open Inclined Square Cavities,” Int. J. Heat Mass Transfer, 48(8), pp. 1470–1479. [CrossRef]
Li, H. , and Tong, S. , 2016, “ Natural Convective Heat Transfer in the Inclined Rectangular Cavities With Low Width-to-Height Ratios,” Int. J. Heat Mass Transfer, 93, pp. 398–407. [CrossRef]
Zhang, T. , and Che, D. , 2016, “ Double MRT Thermal Lattice Boltzmann Simulation for MHD Natural Convection of Nanofluids in an Inclined Cavity With Four Square Heat Sources,” Int. J. Heat Mass Transfer, 94, pp. 87–100. [CrossRef]
Kefayati, G. H. R. , 2018, “ Double-Diffusive Natural Convection and Entropy Generation of Bingham Fluid in an Inclined Cavity,” Int. J. Heat Mass Transfer, 116(Suppl. C), pp. 762–812. [CrossRef]
Sheremet, M. A. , Pop, I. , and Mahian, O. , 2018, “ Natural Convection in an Inclined Cavity With Time-Periodic Temperature Boundary Conditions Using Nanofluids: Application in Solar Collectors,” Int. J. Heat Mass Transfer, 116(Suppl. C), pp. 751–761. [CrossRef]
Nguyen, M. T. , Aly, A. M. , and Lee, S.-W. , 2017, “ Effect of a Wavy Interface on the Natural Convection of a Nanofluid in a Cavity With a Partially Layered Porous Medium Using the ISPH Method,” Numer. Heat Transfer, Part A, 72(1), pp. 68–88. [CrossRef]
Iwatsu, R. , Hyun, J. M. , and Kuwahara, K. , 1993, “ Mixed Convection in a Driven Cavity With a Stable Vertical Temperature Gradient,” Int. J. Heat Mass Transfer, 36(6), pp. 1601–1608. [CrossRef]
Khanafer, K. M. , and Chamkha, A. J. , 1999, “ Mixed Convection Flow in a Lid-Driven Enclosure Filled With a Fluid-Saturated Porous Medium,” Int. J. Heat Mass Transfer, 42(13), pp. 2465–2481. [CrossRef]
Nithiarasu, P. , Seetharamu, K. N. , and Sundararajan, T. , 1997, “ Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium,” Int. J. Heat Mass Transfer, 40(16), pp. 3955–3967. [CrossRef]
Maxwell, J. , 1904, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, UK.
Brinkman, H. C. , 1952, “ The Viscosity of Concentrated Suspensions and Solutions,” J. Chem. Phys., 20(4), p. 571.
Chorin, A. J. , 1968, “ Numerical Solution of the Navier-Stokes Equations,” Math. Comput., 22(104), pp. 745–762. [CrossRef]
Ghia, U. , Ghia, K. N. , and Shin, C. T. , 1982, “ High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys., 48(3), pp. 387–411. [CrossRef]
Nguyen, T. M. , Aly, A. M. , and Lee, S.-W. , 2018, “ Improved Wall Boundary Conditions in the Incompressible Smoothed Particle Hydrodynamics Method,” Int. J. Numer. Methods Heat Fluid Flow, 28(3), pp. 704–725. https://www.emeraldinsight.com/doi/abs/10.1108/HFF-02-2017-0056
Ghazvini, M. , and Shokouhmand, H. , 2009, “ Investigation of a Nanofluid-Cooled Microchannel Heat Sink Using Fin and Porous Media Approaches,” Energy Convers. Manage., 50(9), pp. 2373–2380. [CrossRef]
Muthtamilselvan, M. , Kandaswamy, P. , and Lee, J. , 2010, “ Heat Transfer Enhancement of Copper-Water Nanofluids in a Lid-Driven Enclosure,” Commun. Nonlinear Sci. Numer. Simul., 15(6), pp. 1501–1510. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Initial schematic diagram for the inclined nanofluid-filled cavity partially filled with the porous medium

Grahic Jump Location
Fig. 2

Flowchart of the current ISPH method

Grahic Jump Location
Fig. 3

Comparison of the horizontal and vertical velocity profiles at X=0.5 for the present ISPH method and benchmark results according to Ghia et al. [42] at Re=100, Re=400, and Re=1000

Grahic Jump Location
Fig. 4

Streamlines and isothermal contours under the effects of the Richardson parameter at the inclination angle α=0deg,Darcy parameter Da=10−4 and solid volume fraction ϕ=0.01

Grahic Jump Location
Fig. 5

Streamlines and isothermal contours under the effects of the Darcy parameter Da=10−2, 10−4 and 10−5 at the Richardson parameter Ri=1.0, the inclination angle α=0deg, and solid volume fraction ϕ=0.01

Grahic Jump Location
Fig. 6

Streamlines and isothermal contours under the effects of the solid volume fraction ϕ=0, 0.01, and 0.05 at the Richardson parameter Ri=1.0, the inclination angle α=45deg, and Darcy parameter Da=10−4

Grahic Jump Location
Fig. 7

Streamlines and isothermal contours under the effects of the inclination angle. α = 0 deg, 60 deg and 90 deg at the Richardson parameter Ri = 1.0, Darcy parameter Da = 10−4 and solid volume fraction ϕ = 0.01.

Grahic Jump Location
Fig. 8

Temperature profiles at the midsection of the inclined cavity (X = 0.5) under the effects of the Richardson parameter Ri=0.0001, 1, and 100 at α=0deg and Da=10−4

Grahic Jump Location
Fig. 9

Average Nusselt number along the Richardson parameter under the effects of the inclination angle α=0deg, 30deg, and 60deg at Darcy parameter Da=10−4

Grahic Jump Location
Fig. 10

Average Nusselt number along the Richardson parameter under the effects of the Darcy parameter at two different values of the inclination angle α=30deg and 60deg

Grahic Jump Location
Fig. 11

Average Nusselt number under the effects of the solid volume fraction ϕ at inclination angle α=45deg, Richardson parameter Ri=1 and Darcy parameter Da=10−4

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In