Zalba,
B.
,
Marın,
J. M.
,
Cabeza,
L. F.
, and
Mehling,
H.
, 2003, “Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications,” Appl. Therm. Eng.,
23(3), pp. 251–283.

[CrossRef]
Sharma,
A.
,
Tyagi,
V.
,
Chen,
C.
, and
Buddhi,
D.
, 2009, “Review on Thermal Energy Storage With Phase Change Materials and Applications,” Renewable Sustainable Energy Rev.,
13(2), pp. 318–345.

[CrossRef]
Waqas,
A.
, and
Din,
Z. U.
, 2013, “Phase Change Material PCM Storage for Free Cooling of Buildings—A Review,” Renewable Sustainable Energy Rev.,
18, pp. 607–625.

[CrossRef]
Soares,
N.
,
Costa,
J.
,
Gaspar,
A.
, and
Santos,
P.
, 2013, “Review of Passive PCM Latent Heat Thermal Energy Storage Systems Towards Buildings Energy Efficiency,” Energy Build.,
59, pp. 82–103.

[CrossRef]
Tan,
F.
, and
Tso,
C.
, 2004, “Cooling of Mobile Electronic Devices Using Phase Change Materials,” Appl. Therm. Eng.,
24(2–3), pp. 159–169.

[CrossRef]
Krishnan,
S.
, and
Garimella,
S. V.
, 2004, “Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation,” IEEE Trans. Compon. Packag. Technol.,
27(1), pp. 191–199.

[CrossRef]
Kandasamy,
R.
,
Wang,
X.-Q.
, and
Mujumdar,
A. S.
, 2008, “Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks,” Appl. Therm. Eng.,
28(8–9), pp. 1047–1057.

[CrossRef]
Lappa,
M.
, 2009, Thermal Convection: Patterns, Evolution and Stability,
Wiley, Chichester, UK.

Davis,
S. H.
,
Huppert,
H.
,
Müller,
U.
, and
Worster,
M.
, 2012, Interactive Dynamics of Convection and Solidification, Vol.
219,
Springer Science & Business Media, Dordrecht, The Netherlands.

Ulvrová,
M.
,
Labrosse,
S.
,
Coltice,
N.
,
Råback,
P.
, and
Tackley,
P.
, 2012, “Numerical Modelling of Convection Interacting With a Melting and Solidification Front: Application to the Thermal Evolution of the Basal Magma Ocean,” Phys. Earth Planet. Inter.,
206, pp. 51–66.

[CrossRef]
Batina,
J.
,
Blancher,
S.
, and
Kouskou,
T.
, 2014, “Modelling of a Phase Change Material Melting Process Heated From Below Using Spectral Collocation Methods,” Int. J. Numer. Methods Heat Fluid Flow,
24(3), pp. 697–734.

[CrossRef]
Gau,
C.
, and
Viskanta,
R.
, 1986, “Melting and Solidification of a Pure Metal on a Vertical Wall,” ASME J. Heat Transfer,
108(1), pp. 174–181.

[CrossRef]
Dietsche,
C.
, and
Müller,
U.
, 1985, “Influence of Bénard Convection on Solid–Liquid Interfaces,” J. Fluid Mech.,
161(1), pp. 249–268.

[CrossRef]
Sheikholeslami,
M.
,
Lohrasbi,
S.
, and
Ganji,
D. D.
, 2016, “Numerical Analysis of Discharging Process Acceleration in LHTESS by Immersing Innovative Fin Configuration Using Finite Element Method,” Appl. Therm. Eng.,
107, pp. 154–166.

[CrossRef]
Sheikholeslami,
M.
, 2017, “Influence of Coulomb Forces on Fe

_{3}O

_{4}–H

_{2}O Nanofluid Thermal Improvement,” Int. J. Hydrogen Energy,
42(2), pp. 821–829.

[CrossRef]
Sheikholeslami,
M.
,
Hayat,
T.
, and
Alsaedi,
A.
, 2017, “Numerical Study for External Magnetic Source Influence on Water Based Nanofluid Convective Heat Transfer,” Int. J. Heat Mass Transfer,
106, pp. 745–755.

[CrossRef]
Sheikholeslami,
M.
, and
Rokni,
H. B.
, 2017, “Melting Heat Transfer Influence on Nanofluid Flow Inside a Cavity in Existence of Magnetic Field,” Int. J. Heat Mass Transfer,
114, pp. 517–526.

[CrossRef]
Bejan,
A.
, 1995, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes,
CRC Press, Boca Raton, FL.

Satbhai,
O.
,
Roy,
S.
, and
Ghosh,
S.
, 2017, “A Numerical Study to Investigate the Heat Transfer and Thermodynamic Performance of a Natural Convection Driven Thermal Energy Storage System,” ASME Paper No. IMECE2017-72516.

Lim,
J.
,
Bejan,
A.
, and
Kim,
J.
, 1992, “Thermodynamic Optimization of Phase-Change Energy Storage Using Two or More Materials,” ASME J. Energy Resour. Technol.,
114(1), pp. 84–90.

[CrossRef]
Aceves-Saborio,
S.
,
Nakamura,
H.
, and
Reistad,
G.
, 1994, “Optimum Efficiencies and Phase Change Temperatures in Latent Heat Storage Systems,” ASME J. Energy Resour. Technol.,
116(1), pp. 79–86.

[CrossRef]
Krane,
R. J.
, 1987, “A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems,” Int. J. Heat Mass Transfer,
30(1), pp. 43–57.

[CrossRef]
Badar,
M. A.
,
Zubair,
S. M.
, and
Al-Farayedhi,
A. A.
, 1993, “Second-Law-Based Thermoeconomic Optimization of a Sensible Heat Thermal Energy Storage System,” Energy,
18(6), pp. 641–649.

[CrossRef]
Brent,
A.
,
Voller,
V.
, and
Reid,
K.
, 1988, “Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal,” Numer. Heat Transfer, Part A,
13(3), pp. 297–318.

Voller,
V.
, and
Prakash,
C.
, 1987, “A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems,” Int. J. Heat Mass Transfer,
30(8), pp. 1709 –1719.

[CrossRef]
Voller,
V.
,
Brent,
A.
, and
Prakash,
C.
, 1989, “The Modelling of Heat, Mass and Solute Transport in Solidification Systems,” Int. J. Heat Mass Transfer,
32(9), pp. 1719–1731.

[CrossRef]
Satbhai,
O.
,
Roy,
S.
, and
Ghosh,
S.
, 2012, “Numerical Simulation of Laser Surface Remelting on Unstructured Grids,” Trans. Indian Inst. Met.,
65(6), pp. 833–840.

[CrossRef]
Satbhai,
O.
, 2013, “Heat Transfer Model for Laser Surface Remelting: Towards a Multi-Scale Solidification Model,” Master's thesis, Indian Institute of Technology, Kharagpur, India.

Minkowycz,
W.
, 1996, Advances in Numerical Heat Transfer, Vol.
1,
CRC Press, Boca Raton, FL.

Prakash,
C.
,
Samonds,
M.
, and
Singhal,
A.
, 1987, “A Fixed Grid Numerical Methodology for Phase Change Problems Involving a Moving Heat Source,” Int. J. Heat Mass Transfer,
30(12), pp. 2690–2694.

[CrossRef]
Bejan,
A.
, 2004, Convection Heat Transfer,
Wiley, Hoboken, NJ.

Ferziger,
J. H.
, and
Peric,
M.
, 2001, Computational Methods for Fluid Dynamics, 3rd ed.,
Springer, Berlin.

Versteeg,
H. K.
, and
Malalasekera,
W.
, 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.,
Pearson Education, London.

Jasak,
H.
, 1996, “Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.

Satbhai,
O.
,
Roy,
S.
, and
Ghosh,
S.
, 2017, “A Parametric Multi-Scale, Multiphysics Numerical Investigation in a Casting Process for Al-Si Alloy and a Macroscopic Approach for Prediction of ECT and CET Events,” Appl. Therm. Eng.,
113, pp. 386–412.

[CrossRef]
Sheikholeslami,
M.
, and
Shehzad,
S.
, 2017, “Magnetohydrodynamic Nanofluid Convective Flow in a Porous Enclosure by Means of LBM,” Int. J. Heat Mass Transfer,
113, pp. 796–805.

[CrossRef]
Moukalled,
F.
,
Mangani,
L.
, and
Darwish,
M.
, 2016, The Finite Volume Method in Computational Fluid Dynamics,
Springer, London.

Gobin,
D.
, and
Benard,
C.
, 1992, “Melting of Metals Driven by Natural Convection in the Melt: Influence of Prandtl and Rayleigh Numbers,” ASME J. Heat Transfer,
114(2), pp. 521–524.

[CrossRef]
Lohse,
D.
, and
Xia,
K.-Q.
, 2010, “Small-Scale Properties of Turbulent Rayleigh-Bénard Convection,” Annu. Rev. Fluid Mech.,
42(1), pp. 335–364.

[CrossRef]
Lappa,
M.
, 2011, “Some Considerations About the Symmetry and Evolution of Chaotic Rayleigh–Benard Convection: The Flywheel Mechanism and the ‘Wind’ of Turbulence,” C. R. Mec.,
339(9), pp. 563–572.

[CrossRef]
Ahlers,
G.
,
Grossmann,
S.
, and
Lohse,
D.
, 2009, “Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection,” Rev. Mod. Phys.,
81(2), p. 503.

[CrossRef]
Senapati,
J. R.
,
Dash,
S. K.
, and
Roy,
S.
, 2017, “Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins,” ASME J. Heat Transfer,
139(8), p. 082501.

[CrossRef]