Research Papers

Lattice Boltzmann Method for Combined Natural Convection Surface Radiation in Open Cavity

[+] Author and Article Information
Ayoub Msaddak

Thermal Radiation Research Unit,
Faculty of Sciences of Tunis,
University of Tunis EL Manar,
El Manar 1,
Tunis 2092, Tunisia
e-mail: ayoub.msaddak@fst.utm.tn

Mohieddine Ben Salah

Thermal Process Laboratory,
Center of Research and Energy Technology,
Hammam Lif 2050, Tunisia
e-mail: mohieddine2002@yahoo.com

Ezeddine Sediki

Thermal Radiation Research Unit,
Faculty of Sciences of Tunis,
University of Tunis EL Manar,
El Manar 1,
Tunis 2092, Tunisia
e-mail: sediki.ezeddine@fst.utm.tn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received July 3, 2017; final manuscript received February 16, 2018; published online May 22, 2018. Assoc. Editor: Sandip Mazumder.

J. Thermal Sci. Eng. Appl 10(5), 051011 (May 22, 2018) (10 pages) Paper No: TSEA-17-1225; doi: 10.1115/1.4039925 History: Received July 03, 2017; Revised February 16, 2018

Lattice Boltzmann method (LBM) is performed to study numerically combined natural convection and surface radiation inside an inclined two-dimensional open square cavity. The cavity is heated by a constant temperature at the wall facing the opening. The walls normal to the heated surface are assumed to be adiabatic, diffuse, gray, and opaque while the open boundary is assumed to be black at ambient temperature. A Bathnagar, Gross and Krook (BGK) collision model with double distribution function (D2Q9-D2Q4) is adopted. Effects of surface radiation, inclination angle, and Rayleigh number on the heat transfer are analyzed and discussed. Results are presented in terms of isotherms, streamlines, and Nusselt number. It was found that the presence of surface radiation enhances the heat transfer. The convective Nusselt number decreases with increasing surface emissivity as well as with Rayleigh number, while the total Nusselt number increases with increasing surface emissivity and Rayleigh number. The inclination angle has also a significant effect on flow and heat transfer inside the cavity. However, the magnitude of total heat transfer decreases considerably when open cavity is tilted downward.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Balaji, C. , and Venkateshan, S. P. , 1994, “ Interaction of Radiation With Free Convection in an Open Cavity,” Int. J. Heat Fluid Flow, 15(4), pp. 317–324. [CrossRef]
Wang, Z. , Yang, M. , Li, L. , and Zhang, Y. , 2011, “ Combined Heat Transfer by Natural Convection-Conduction and Surface Radiation in an Open Cavity Under Constant Heat Flux Heating,” Numer. Heat Transfer, Part A, 60(4), pp. 289–304. [CrossRef]
Vahl Davis, G. D. , 1983, “ Natural Convection of Air in Square Cavity, a Bench Mark Numerical Solution,” Int. J. Numer. Method Fluid, 3(3), pp. 249–264. [CrossRef]
Cianfrini, C. , Corcione, M. , and Dell'Omo, P. P. , 2005, “ Natural Convection in Tilted Square Cavities With Differentially Heated Opposite Walls,” Int. J. Therm. Sci., 44(5), pp. 441–451. [CrossRef]
Martyushev, S. G. , and Sheremet, M. A. , 2014, “ Conjugate Natural Convection Combined With Surface Thermal Radiation in an Air Filled Cavity With Internal Heat Source,” Int. J. Therm. Sci., 76, pp. 51–67. [CrossRef]
Bahlaoui, A. , Raji, A. , Hasnaoui, M. , Ouardi, C. , Naïmi, M. , and Makayssi, T. , 2011, “ Height Partition Effect on Combined Mixed Convection and Surface Radiation in a Vented Rectangular Cavity,” J. Appl. Fluid Mech., 4(1), pp. 89–96. http://jafmonline.net/JournalArchive/download?file_ID=15275&issue_ID=203
Yang, H. Q. , Yang, K. T. , and Lloyd, J. R. , 1987, “ Laminar Natural-Convection Flow Transitions in Tilted Three-Dimensional Longitudinal Rectangular Enclosures,” Int. J. Heat Mass Transfer, 30(8), pp. 1637–1644. [CrossRef]
Altaç, Z. , and Kurtul, O. , 2007, “ Natural Convection in Tilted Rectangular Enclosures With a Vertically Situated Hot Plate Inside,” Appl. Therm. Eng., 27(11–12), pp. 1832–1840. [CrossRef]
Bouali, H. , Mezrhab, A. , Amaoui, H. , and Bouzidi, M. , 2006, “ Radiation-Natural Convection Heat Transfer in an Inclined Rectangular Enclosure,” Int. J. Therm. Sci., 45(6), pp. 553–566. [CrossRef]
Vivek, V. , Sharma, A. K. , and Balaji, C. , 2012, “ Interaction Effects Between Laminar Natural Convection and Surface Radiation in Tilted Square and Shallow Enclosures,” Int. J. Therm. Sci., 60, pp. 70–84. [CrossRef]
Lin, C. X. , and Xin, M. D. , 1992, “ Turbulent Mixed Convection-Radiation Interactions in a Cavity,” J. Therm. Sci., 1(3), pp. 189–195. [CrossRef]
Polat, O. , and Bilgen, E. , 2002, “ Laminar Natural Convection in Inclined Open Shallow Cavities,” Int. J. Therm. Sci., 41(4), pp. 360–368. [CrossRef]
Bilgen, E. , and Oztop, H. , 2005, “ Natural Convection Heat Transfer in Partially Open Inclined Square Cavities,” Int. J. Heat Mass Transfer, 48(8), pp. 1470–1479. [CrossRef]
Singh, D. K. , and Singh, S. N. , 2016, “ Combined Free Convection and Surface Radiation in Tilted Open Cavity,” Int. J. Therm. Sci., 107, pp. 111–120. [CrossRef]
Frisch, U. , Hasslacher, B. , and Pomeau, Y. , 1986, “ Lattice Gas Automata for the Navier-Stokes Equation,” Phys. Rev. Lett., 56(14), pp. 1505–1508. [CrossRef] [PubMed]
McNamara, G. R. , and Zanetti, G. , 1988, “ Use of the Soltzmann Equation to Simulate Lattice-Gas Automata,” Phys. Rev. Lett., 61(20), pp. 2332–2335. [CrossRef] [PubMed]
Higuera, F. J. , Succi, S. , and Benzi, R. , 1989, “ Lattice Gas Dynamics With Enhanced Collisions,” Europhys. Lett., 9(4), pp. 345–349. [CrossRef]
Qian, Y. H. , D'Humieres, D. , and Lallemand, P. , 1992, “ Lattice BGK Models for Navier-Stokes Equation,” Europhys. Lett., 17(6), pp. 479–484. [CrossRef]
Succi, S. , 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Calrendon Press, Oxford, UK.
Chen, S. , and Doolen, G. D. , 1998, “ Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech., 30(1), pp. 329–364. [CrossRef]
Bhatnagar, P. L. , Gross, E. P. , and Krook, M. , 1954, “ A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev., 94(3), pp. 511–525. [CrossRef]
Hasan, M. F. , Himika, T. A. , and Molla, M. , 2016, “ Lattice Boltzmann Simulation of Airflow and Heat Transfer in a Model Ward of a Hospital,” ASME J. Therm. Sci. Eng. Appl., 9(1), p. 011011.
Alexander, F. J. , Chen, S. , and Sterling, J. D. , 1993, “ Lattice Boltzmann Thermohydrodynamics,” Phys. Rev. E, 47(4), p. R2249.
Chen, Y. , Ohashi, H. , and Akiyama, M. , 1994, “ Thermal Lattice Bhatnagar-Gross-Krook Model Without Nonlinear Deviation in Macrodynamic Equations,” Phys. Rev. E, 50(4), pp. 2776–2783. [CrossRef]
Pavlo, P. , Vahala, G. , and Vahala, L. , 1998, “ Higher Order Isotropic Velocity Grids in Lattice Methods,” Phys. Rev. Lett., 80(18), pp. 3960–3963. [CrossRef]
Filippova, O. , and Hanel, D. , 2000, “ A Novel Lattice BGK Approach for Low Mach Number Combustion,” J. Comput. Phys., 158(2), pp. 139–160. [CrossRef]
Lallemand, P. , and Luo, L. S. , 2003, “ Hybrid Finite-Difference Thermal Lattice Boltzmann Equation,” Int. J. Mod. Phys. B, 17(01n02), pp. 41–47. [CrossRef]
Eggels, J. G. M. , and Somers, J. A. , 1995, “ Numerical Simulation of Free Convective Flow Using the Lattice-Boltzmann Scheme,” Int. J. Heat Fluid Flow, 16(5), pp. 357–364. [CrossRef]
Shan, X. , 1997, “ Simulation of Rayleigh-Bénard Convection Using a Lattice Boltzmann Method,” Phys. Rev. E, 55(3), pp. 2780–2788. [CrossRef]
He, X. , Chen, S. , and Doolen, G. D. , 1998, “ A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,” J. Comput. Phys., 146(1), pp. 282–300. [CrossRef]
Rahmati, A. R. , and Najjarnezami, A. , 2016, “ A Double Multi-Relaxation-Time Lattice Boltzmann Method for Simulation of Magneto Hydrodynamics Natural Convection of Nanofluid in a Square Cavity,” J. Appl. Fluid Mech., 9(3), pp. 1201–1214. [CrossRef]
Gorban, A. N. , and Karlin, I. V. , 1992, “ Structure and Approximation of the Chapman-Enskog Expansion for Linearized Grad Equations,” Trans. Theory Stat. Phys., 21(1–2), pp. 101–117.
Gallivan, M. A. , Noble, D. R. , Georgeadis, J. G. , and Buckius, R. O. , 1997, “ An Evaluation of the Bounce-Back Boundary Condition for Lattice Boltzmann Simulation,” Int. J. Numer. Methods Fluids, 25(3), pp. 249–263. [CrossRef]
Chen, S. , Martinez, D. , and Mei, R. , 1996, “ On Boundary Conditions in Lattice Boltzmann Methods,” Phys. Fluids, 8(9), pp. 2527–2536. [CrossRef]
Mohamad, A. A. , 2011, Lattice Boltzmann Method, Fundamentals and Engineering Applications With Computer Codes, Springer, London.
Siegel, R. , and Howell, J. R. , 1992, Thermal Radiation Heat Transfer, 3rd ed., Hemispheres Publishing, New York.
Modest, M. F. , 2003, Radiative Heat Transfer, 2nd ed., Elsevier, Amsterdam, The Netherlands.
Howell, J. R. , 1982, A Catalog of Radiation Configuration Factors, McGraw-Hill, New York.
Wang, H. , Xin, S. , and Le Quéré, P. , 2006, “ Étude Numérique Du Couplage De La Convection Naturelle Avec Le Rayonnement De Surfaces En Cavité Carrée Remplie D'air,” C. R. Méc., 334(1), pp. 48–57. [CrossRef]
Martyushev, S. G. , and Sheremet, M. A. , 2015, “ Numerical Analysis of 3D Regimes of Natural Convection and Surface Radiation in a Differentially Heated Enclosure,” J. Eng. Thermophys., 24(1), pp. 22–32. [CrossRef]
Vanka, S. P. , 1986, “ Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables,” J. Comput. Phys., 65(1), pp. 138–158. [CrossRef]
Schreiber, R. , and Keller, H. B. , 1983, “ Driven Cavity Flows by Efficient Numerical Techniques,” J. Comput. Phys., 49(2), pp. 310–333. [CrossRef]
Ghia, U. , Ghia, K. N. , and Shin, C. T. , 1982, “ High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys., 48(3), pp. 387–411. [CrossRef]
Hou, S. , Zou, Q. , Chen, S. , and Doolen, G. , 1995, “ Simulation of Cavity Flow by Lattice Boltzmann Method,” J. Comput. Phys., 118(2), pp. 329–347. [CrossRef]
Hinojosa, J. F. , Alvarez, G. , and Estrada, C. A. , 2006, “ Three-Dimensional Numerical Simulation of the Natural Convection in an Open Tilted Cubic Cavity,” Rev. Mex. Fis., 52(2), pp. 111–119. https://rmf.smf.mx/pdf/rmf/52/2/52_2_111.pdf
Prakash, M. , 2013, “ Numerical Study on Natural Convection Heat Loss From Open Cubical Cavities,” J. Eng., 2013, p. 320647.
Hinojosa, J. F. , Estrada, C. A. , Cabanillas, R. E. , and Alvarez, G. , 2005, “ Numerical Study of Transient and Steady-State Natural Convection and Surface Thermal Radiation in a Horizontal Square Open Cavity,” Numer. Heat Transfer, 48(2), pp. 179–196. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of the problem geometry

Grahic Jump Location
Fig. 2

D2Q9 model and D2Q4 model

Grahic Jump Location
Fig. 3

Evolution of the isotherms (up) and streamlines (down) with inclination angle for Ra = 104, (a) ε = 0 and (b) ε = 0.8

Grahic Jump Location
Fig. 4

Evolution of the isotherms (up) and streamlines (down) with inclination angle for Ra = 106, (a) ε = 0 and (b) ε = 0.8

Grahic Jump Location
Fig. 5

Local convective Nusselt number at the hot wall as function of surface emissivity and inclination angle for Ra = 104 (a) and Ra = 106 (b)

Grahic Jump Location
Fig. 6

Average convective and radiative Nusselt number (a) and average total Nusselt number (b) as function of surface emissivity and inclination angle



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In