Research Papers

Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance

[+] Author and Article Information
Corey Kruse, Mike Lucis, Jeff E. Shield, George Gogos

Department of Mechanical and
Materials Engineering,
University of Nebraska–Lincoln,
Lincoln, NE 68588

Troy Anderson, Craig Zuhlke, Dennis Alexander

Department of Electrical Engineering,
University of Nebraska–Lincoln,
Lincoln, NE 68588

Sidy Ndao

Department of Mechanical and
Materials Engineering,
University of Nebraska–Lincoln,
Lincoln, NE 68588
e-mail: sndao2@unl.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received January 18, 2017; final manuscript received November 3, 2017; published online March 28, 2018. Assoc. Editor: Amir Jokar.

J. Thermal Sci. Eng. Appl 10(3), 031009 (Mar 28, 2018) (10 pages) Paper No: TSEA-17-1020; doi: 10.1115/1.4038763 History: Received January 18, 2017; Revised November 03, 2017

An experimental investigation of the effects of layers of nanoparticles formed during femtosecond laser surface processing (FLSP) on pool boiling heat transfer performance has been conducted. Five different stainless steel 304 samples with slightly different surface features were fabricated through FLSP, and pool boiling heat transfer experiments were carried out to study the heat transfer characteristics of each surface. The experiments showed that the layer(s) of nanoparticles developed during the FLSP processes, which overlay FLSP self-organized microstructures, can either improve or degrade boiling heat transfer coefficients (HTC) depending on the overall thickness of the layer(s). This nanoparticle layer thickness is an indirect result of the type of microstructure created. The HTCs were found to decrease with increasing nanoparticle layer thickness. This trend has been attributed to added thermal resistance. Using a focused ion beam milling process and transmission electron microscopy (TEM), the physical and chemical properties of the nanoparticle layers were characterized and used to explain the observed heat transfer results. Results suggest that there is an optimal nanoparticle layer thickness and material composition such that both the HTCs and critical heat flux (CHF) are enhanced.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Ndao, S. , Peles, Y. , and Jensen, M. K. , 2012, “ Experimental Investigation of Flow Boiling Heat Transfer of Jet Impingement on Smooth and Micro Structured Surfaces,” Int. J. Heat Mass Transfer, 55(19–20), pp. 5093–5101. [CrossRef]
Kim, S. , Kim, H. D. , Kim, H. , Ahn, H. S. , Jo, H. , Kim, J. , and Kim, M. H. , 2010, “ Effects of Nano-Fluid and Surfaces With Nano Structure on the Increase of CHF,” Exp. Therm. Fluid Sci., 34(4), pp. 487–495. [CrossRef]
Chu, K.-H. , Enright, R. , and Wang, E. N. , 2012, “ Structured Surfaces for Enhanced Pool Boiling Heat Transfer,” Appl. Phys. Lett., 100(24), p. 241603. [CrossRef]
Yao, Z. , Lu, Y.-W. , and Kandlikar, S. G. , 2012, “ Micro/Nano Hierarchical Structure in Microchannel Heat Sink for Boiling Enhancement,” IEEE 25th International Conference Micro Electro Mechanical Systems (MEMS), Paris, France, Jan. 29–Feb. 2, pp. 285–288.
Bang, I.-C. , and Jeong, J.-H. , 2011, “ Nanotechnology for Advanced Nuclear Thermal-Hydraulics and Safety: Boiling and Condensation,” Nucl. Eng. Technol., 43(3), pp. 217–242. [CrossRef]
Lu, Y. , and Kandlikar, S. , 2011, “ Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions,” Heat Transf. Eng., 32(10), pp. 827–842.
Chen, R. , Lu, M.-C. , Srinivasan, V. , Wang, Z. , Cho, H. H. , and Majumdar, A. , 2009, “ Nanowires for Enhanced Boiling Heat Transfer,” Nano Lett., 9(2), pp. 548–553. [CrossRef] [PubMed]
Lu, M.-C. , Chen, R. , Srinivasan, V. , Carey, V. P. , and Majumdar, A. , 2011, “ Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces,” Int. J. Heat Mass Transfer, 54(25–26), pp. 5359–5367. [CrossRef]
Yao, Z. , Lu, Y.-W. , and Kandlikar, S. G. , 2011, “ Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips,” Int. J. Therm. Sci., 50(11), pp. 2084–2090. [CrossRef]
Li, C. , Wang, Z. , Wang, P.-I. , Peles, Y. , Koratkar, N. , and Peterson, G. P. , 2008, “ Nanostructured Copper Interfaces for Enhanced Boiling,” Small, 4(8), p. 1084. [CrossRef] [PubMed]
Patil, C. M. , and Kandlikar, S. G. , 2014, “ Review of the Manufacturing Techniques for Porous Surfaces Used in Enhanced Pool Boiling,” Heat Transfer Eng., 35(10), pp. 887–902. [CrossRef]
Liter, S. G. , and Kaviany, M. , 2001, “ Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment,” Int. J. Heat Mass Transfer, 44(22), pp. 4287–4311. [CrossRef]
Rahman, M. , Ölçeroğlu, E. , and McCarthy, M. , 2014, “ Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces,” Langmuir, 30(37), pp. 11225–11234.
McHale, J. P. , Garimella, S. V. , Fisher, T. S. , and Powell, G. A. , 2011, “ Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces With and Without Carbon Nanotubes,” Nanoscale Microscale Thermophys. Eng., 15(3), pp. 133–150. [CrossRef]
Li, C. , and Peterson, G. P. , 2007, “ Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces,” ASME J. Heat Transfer, 129(11), pp. 1465–1475.
Hendricks, T. J. , Krishnan, S. , Choi, C. , Chang, C.-H. , and Paul, B. , 2010, “ Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper,” Int. J. Heat Mass Transfer, 53(15–16), pp. 3357–3365. [CrossRef]
Im, Y. , Dietz, C. , Lee, S. S. , and Joshi, Y. , 2012, “ Flower-Like CuO Nanostructures for Enhanced Boiling,” Nanoscale Microscale Thermophys. Eng., 16(3), pp. 145–153. [CrossRef]
Launay, S. , Fedorov, A. G. , Joshi, Y. , Cao, A. , and Ajayan, P. M. , 2006, “ Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement,” Microelectron. J., 37(11), pp. 1158–1164. [CrossRef]
Ahn, H. S. , Lee, C. , Kim, H. , Jo, H. , Kang, S. , Kim, J. , Shin, J. , and Kim, M. H. , 2010, “ Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface,” Nucl. Eng. Des., 240(10), pp. 3350–3360. [CrossRef]
Xu, P. , Li, Q. , and Xuan, Y. , 2015, “ Enhanced Boiling Heat Transfer on Composite Porous Surface,” Int. J. Heat Mass Transfer, 80, pp. 107–114. [CrossRef]
Das, S. , and Bhaumik, S. , 2014, “ Enhancement of Nucleate Pool Boiling Heat Transfer on Titanium Oxide Thin Film Surface,” Arab. J. Sci. Eng., 39(10), pp. 7385–7395. [CrossRef]
Forrest, E. , Williamson, E. , Buongiorno, J. , Hu, L.-W. , Rubner, M. , and Cohen, R. , 2010, “ Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings,” Int. J. Heat Mass Transfer, 53(1–3), pp. 58–67. [CrossRef]
Seo, G. H. , Hwang, H. , Yoon, J. , Yeo, T. , Son, H. H. , Jeong, U. , Jeun, G. , Choi, W. , and Kim, S. J. , 2015, “ Enhanced Critical Heat Flux With Single-Walled Carbon Nanotubes Bonded on Metal Surfaces,” Exp. Therm. Fluid Sci., 60, pp. 138–147. [CrossRef]
Saeidi, D. , and Alemrajabi, A. A. , 2013, “ Experimental Investigation of Pool Boiling Heat Transfer and Critical Heat Flux of Nanostructured Surfaces,” Int. J. Heat Mass Transfer, 60, pp. 440–449. [CrossRef]
Stutz, B. , Morceli, C. H. S. , da Silva, M. D. F. , Cioulachtjian, S. , and Bonjour, J. , 2011, “ Influence of Nanoparticle Surface Coating on Pool Boiling,” Exp. Therm. Fluid Sci., 35(7), pp. 1239–1249. [CrossRef]
Seon Ahn, H. , and Hwan Kim, M. , 2012, “ A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification,” ASME J. Heat Transfer, 134(2), p. 024001. [CrossRef]
Sheikhbahai, M. , Nasr Esfahany, M. , and Etesami, N. , 2012, “ Experimental Investigation of Pool Boiling of Fe3O4/Ethylene Glycol–Water Nanofluid in Electric Field,” Int. J. Therm. Sci., 62, pp. 149–153. [CrossRef]
Shahmoradi, Z. , Etesami, N. , and Nasr Esfahany, M. , 2013, “ Pool Boiling Characteristics of Nanofluid on Flat Plate Based on Heater Surface Analysis,” Int. Commun. Heat Mass Transfer, 47, pp. 113–120. [CrossRef]
Kim, J. , Benton, J. F. , and Wisniewski, D. , 2002, “ Pool Boiling Heat Transfer on Small Heaters: Effect of Gravity and Subcooling,” Int. J. Heat Mass Transfer, 45(19), pp. 3919–3932. [CrossRef]
Kruse, C. M. , Anderson, T. , Wilson, C. , Zuhlke, C. , Alexander, D. , Gogos, G. , and Ndao, S. , 2015, “ Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces,” Int. J. Heat Mass Transfer, 82, pp. 109–116. [CrossRef]
Zuhlke, C. , Anderson, T. , and Alexander, D. , 2013, “ Formation of Multiscale Surface Structures on Nickel Via Above Surface Growth and Below Surface Growth Mechanisms Using Femtosecond Laser Pulses,” Opt. Express, 21(7), pp. 8460–8473. [CrossRef] [PubMed]
Zuhlke, C. A. , Anderson, T. P. , and Alexander, D. R. , 2013, “ Fundamentals of Layered Nanoparticle Covered Pyramidal Structures Formed on Nickel During Femtosecond Laser Surface Interactions,” Appl. Surf. Sci., 283, pp. 648–653. [CrossRef]
Zuhlke, C. A. , Anderson, T. P. , and Alexander, D. R. , 2013, “ Comparison of the Structural and Chemical Composition of Two Unique Micro/Nanostructures Produced by Femtosecond Laser Interactions on Nickel,” Appl. Phys. Lett., 103(12), p. 121603. [CrossRef]
Zuhlke, C. A. , Alexander, D. R. , Bruce, J. C. , Ianno, N. J. , Kamler, C. A. , and Yang, W. , 2010, “ Self Assembled Nanoparticle Aggregates From Line Focused Femtosecond Laser Ablation,” Opt. Express, 18(5), pp. 4329–4339. [CrossRef] [PubMed]
Kruse, C. , Anderson, T. , Wilson, C. , Zuhlke, C. , Alexander, D. , Gogos, G. , and Ndao, S. , 2013, “ Extraordinary Shifts of the Leidenfrost Temperature From Multiscale Micro/Nanostructured Surfaces,” Langmuir, 29(31), pp. 9798–9806. [CrossRef] [PubMed]
Eliezer, S. , Eliaz, N. , Grossman, E. , Fisher, D. , Gouzman, I. , Henis, Z. , Pecker, S. , Horovitz, Y. , Fraenkel, M. , Maman, S. , and Lereah, Y. , 2004, “ Synthesis of Nanoparticles With Femtosecond Laser Pulses,” Phys. Rev. B, 69(14), p. 144119. [CrossRef]
Vorobyev, A. Y. , and Guo, C. , 2006, “ Back Deposition of Ablated Particles Onto Sample in Femtosecond Laser Processing of Metals,” IEEE Eighth International Conference on Laser Fiber-Optical Networks Model (LFNM), Kharkiv, Ukraine, June 29–July 1, pp. 39–41.
Okamuro, K. , Hashida, M. , Miyasaka, Y. , Ikuta, Y. , Tokita, S. , and Sakabe, S. , 2010, “ Laser Fluence Dependence of Periodic Grating Structures Formed on Metal Surfaces Under Femtosecond Laser Pulse Irradiation,” Phys. Rev. B, 82(16), p. 165417. [CrossRef]
Vorobyev, A. Y. , Makin, V. S. , and Guo, C. , 2007, “ Periodic Ordering of Random Surface Nanostructures Induced by Femtosecond Laser Pulses on Metals,” J. Appl. Phys., 101(3), p. 034903. [CrossRef]
Sakabe, S. , Hashida, M. , Tokita, S. , Namba, S. , and Okamuro, K. , 2009, “ Mechanism for Self-Formation of Periodic Grating Structures on a Metal Surface by a Femtosecond Laser Pulse,” Phys. Rev. B, 79(3), p. 033409. [CrossRef]
Tsibidis, G. D. , Barberoglou, M. , Loukakos, P. A. , Stratakis, E. , and Fotakis, C. , 2012, “ Dynamics of Ripple Formation on Silicon Surfaces by Ultrashort Laser Pulses in Subablation Conditions,” Phys. Rev. B, 86(11), p. 115316. [CrossRef]
Kruse, C. , Tsubaki, A. , Zuhlke, C. , Anderson, T. , Alexander, D. , Gogos, G. , and Ndao, S. , 2016, “ Secondary Pool Boiling Effects,” Appl. Phys. Lett., 108(5), p. 051602.
Vafaei, S. , and Borca-Tasciuc, T. , 2014, “ Role of Nanoparticles on Nanofluid Boiling Phenomenon: Nanoparticle Deposition,” Chem. Eng. Res. Des., 92(5), pp. 842–856. [CrossRef]


Grahic Jump Location
Fig. 1

Left: pool boiling setup and right: cross-sectional view of heating block and boiling surface

Grahic Jump Location
Fig. 3

Left: laser confocal 3D images, middle: SEM images (S1–S4 20 μm scale bar, LIPSS 2 μm scale bar), and right: SEM images (S1–S4 5 μm scale bar, LIPSS 1 μm scale bar)

Grahic Jump Location
Fig. 2

Schematic for FLSP

Grahic Jump Location
Fig. 4

Images of cross sections for each of the samples in Fig. 3. In each image the white top layer corresponds to the platinum layer. Beneath the platinum is the nanoparticle layer (dark gray) and below the nanoparticle layer is the core material (light gray). Scale bars are 10 μm for all surfaces except ASG-1 which is 5 μm.

Grahic Jump Location
Fig. 5

Top: pool boiling curves for the NC-pyramid structures as well as the LIPSS surface and previously published ASG and BSG-Mound structures. Bottom: HTCs with respect to heat flux for the same surfaces.

Grahic Jump Location
Fig. 6

Top: cross section view of the nanoparticle layer and bulk material interface (1 μm scale bar). Bottom left: high angle annular dark field TEM image of the interface between the nanoparticle layer and the bulk material. Bottom right: combined energy dispersion X-ray spectroscopy map of the interface showing that the nanoparticles are primarily composed of iron, chromium, and oxygen (300 nm scale bar).

Grahic Jump Location
Fig. 7

Schematic describing the balancing mechanism among evaporation dynamics, conduction heat transfer, and liquid supply due to capillary wicking

Grahic Jump Location
Fig. 8

Left: S2 and S3 before testing and right: S2 and S3 after testing



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In