Research Papers

Thermal Conductivity and Mechanical Properties of Low-Density Silicone Rubber Filled With Al2O3 and Graphene Nanoplatelets

[+] Author and Article Information
Yingchun Zhang, Liye Zhang, Huaqing Xie

School of Environment and
Materials Engineering,
College of Engineering,
Shanghai Polytechnic University,
Shanghai 201209, China

Wei Yu

School of Environment and
Materials Engineering,
College of Engineering,
Shanghai Polytechnic University,
Shanghai 201209, China
e-mail: yuwei@sspu.edu.cn

Junshan Yin, Jingkang Wang

Shanghai Yueda New Material Science
and Technology Co. Ltd.,
Shanghai 201209, China

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received January 6, 2017; final manuscript received April 4, 2017; published online August 28, 2017. Assoc. Editor: Jingchao Zhang.

J. Thermal Sci. Eng. Appl 10(1), 011014 (Aug 28, 2017) (5 pages) Paper No: TSEA-17-1003; doi: 10.1115/1.4036797 History: Received January 06, 2017; Revised April 04, 2017

A simple approach is developed to obtain a multiscale network of heat conducting by filling spherical alumina (S-Al2O3) and graphene nanoplatelets (GnPs) into silicone rubber (SR). This unique structure effectively minimizes the thermal contact resistance between fillers and matrix. The physical properties of the composites are characterized by thermal conductivity, density, and tensile strength. A high thermal conductivity of 3.37 Wm−1 K−1 has been achieved, which is 47.1% higher than the single filler at the same loading. A strong and obvious synergistic effect has been observed as S-Al2O3 and GnPs filled into silicone rubber matrix. It is interesting that the composites with GnPs have the lower density (2.62 g/cm3, reduced by 6%) and the superior tensile performance, compared to silicone rubber composite with neat S-Al2O3. The composites have the potential applications in heat dissipation of light-emitting diode.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Kemaloglu, S. , Ozkoc, G. , and Aytac, A. , 2010, “ Properties of Thermally Conductive Micro and Nano Size Boron Nitride Reinforced Silicon Rubber Composites,” Thermochim. Acta, 499(1), pp. 40–47. [CrossRef]
Hou, G. , Cheng, B. , Ding, F. , Yao, M. , Hu, P. , and Yuan, F. , 2015, “ Synthesis of Uniform α-Si3N4 Nanospheres by RF Induction Thermal Plasma and Their Application in High Thermal Conductive Nanocomposites,” Appl. Mater. Interfaces, 7(4), pp. 2873–2881. [CrossRef]
Kamseu, E. , Kamseu, Z. , Ali, B. , Zekeng, S. , Melo, U. , Rossignol, S. , and Leonelli, C. , 2015, “ Cumulative Pore Volume, Pore Size Distribution and Phases Percolation in Porous Inorganic Polymer Composite: Relation Microstructure and Effective Thermal Conductivity,” Energy Build., 88, pp. 45–56. [CrossRef]
Gao, B. Z. , Xu, J. Z. , Peng, J. J. , Kang, F. Y. , Du, H. D. , Li, J. , Chiang, S. W. , Xu, C. J. , Hu, N. , and Ning, X. S. , 2015, “ Experimental and Theoretical Studies of Effective Thermal Conductivity of Composites Made of Silicone Rubber and Al2O3 Particles,” Thermochim. Acta, 614, pp. 1–8. [CrossRef]
Yu, H. , Heider, D. , and Advani, S. , 2015, “ Role of In-Plane Stacking Sequence on Transverse Effective Thermal Conductivity of Unidirectional Composite Laminates,” Int. J. Heat Mass Transfer, 85, pp. 897–903. [CrossRef]
Chiu, H. T. , and Wu, J. H. , 2005, “ Conductive Effect of an Electronic/Ionic Complex Conductivity Modifier for Silicone Elastomers,” J. Appl. Polym. Sci., 97(3), pp. 711–720. [CrossRef]
Pradhan, B. , Srivastava, S. K. , Ananthakrishnan, R. , and Saxena, A. , 2011, “ Preparation and Characterization of Exfoliated Layered Double Hydroxide/Silicone Rubber Nanocomposites,” J. Appl. Polym. Sci., 119(1), pp. 343–351. [CrossRef]
Wang, Q. , Gao, W. , and Xie, Z. M. , 2003, “ Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease,” J. Appl. Polym. Sci., 89(9), pp. 2397–2399. [CrossRef]
Song, Y. Z. , Yu, J. H. , Yu, L. H. , Alam, F. E. , Dai, W. , Li, C. Y. , and Jiang, N. , 2015, “ Enhancing the Thermal, Electrical, and Mechanical Properties of Silicone Rubber by Addition of Graphene Nanoplatelets,” Mater. Des., 88, pp. 950–957. [CrossRef]
Mu, Q. H. , Feng, S. Y. , and Diao, G. Z. , 2007, “ Thermal Conductivity of Silicone Rubber Filled With ZnO,” Polym. Compos., 28(2), pp. 125–130. [CrossRef]
Sim, L. C. , Ramanan, S. R. , Ismail, H. , Seetharamu, K. N. , and Goh, T. J. , 2005, “ Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes,” Thermochim. Acta, 430(1–2), pp. 155–165. [CrossRef]
Meyer, L. , Jayaram, S. , and Cherney, E. A. , 2004, “ Thermal Conductivity of Filled Silicone Rubber and Its Relationship to Erosion Resistance in the Inclined Plane Test,” IEEE Trans. Dielectr. Electr. Insul., 11(4), pp. 620–630. [CrossRef]
Mu, Q. H. , and Feng, S. Y. , 2007, “ Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation,” Thermochim. Acta, 462(1–2), pp. 70–75. [CrossRef]
He, Y. , Wu, X. S. , and Chen, Z. C. , 2011, “ Thermal Conductivity of Composite Silicone Rubber Filled With Graphite/Silicone Carbide,” Adv. Mater. Res., 221, pp. 382–388. [CrossRef]
Chen, J. , and Zhang, H. , 2015, “ Thermal Conductivity Performance of Silicon Rubber Enhanced by Aluminum Nitride Powders,” Dig. J. Nanomater. Biostruct., 10(3), pp. 1003–1008. http://www.chalcogen.ro/1003_Chen.pdf
Cheng, J. P. , Liu, T. , Zhang, J. , Wang, B. B. , Ying, J. , Liu, F. , and Zhang, X. B. , 2014, “ Influence of Phase and Morphology on Thermal Conductivity of Alumina Particle/Silicone Rubber Composites,” Appl. Phys., 117(4), pp. 1985–1992. [CrossRef]
Zha, J. W. , Zhu, Y.-H. , Li, W.-K. , Bai, J. , and Dang, Z.-M. , 2012, “ Low Dielectric Permittivity and High Thermal Conductivity Silicone Rubber Composites With Micro-Nano-Sized Particles,” Appl. Phys. Lett., 101(6), p. 062905. [CrossRef]
Ren, P. G. , Si, X. H. , Sun, Z. F. , Ren, F. , Pei, L. , and Hou, S. Y. , 2016, “ Thermal Stability of Ultra-High-Molecular-Weight Polyethylene Composites With a Segregated Structure,” J. Polym. Res., 23(2), pp. 1–11. [CrossRef]
Zhang, J. , Xu, F. , Hong, Y. , Xiong, Q. , and Pan, J. , 2015, “ A Comprehensive Review on the Molecular Dynamics Simulation of the Novel Thermal Properties of Graphene,” RSC Adv., 5, pp. 89415–89426. [CrossRef]
Zhang, H. Y. , Lin, Y. X. , Zhang, D. F. , Wang, W. G. , Xing, Y. X. , Lin, J. , Hong, H. Q. , and Li, C. H. , 2016, “ Graphene Nanosheet/Silicone Composite With Enhanced Thermal Conductivity and Its Application in Heat Dissipation of High-Power Light-Emitting Diodes,” Curr. Appl. Phys., 16(12), pp. 1695–1702. [CrossRef]
Zhao, X. W. , Zang, C. G. , Wen, Y. Q. , and Jiao, Q. J. , 2015, “ Thermal and Mechanical Properties of Liquid Silicone Rubber Composites Filled With Functionalized Graphene Oxide,” J. Appl. Polym. Sci., 132(38), p. 42582.
Chen, J. , Yao, B. W., Li, C., and Shi, G. Q., 2013, “ An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide,” Carbon, 64(11), pp. 225–229. [CrossRef]
Ahmad, I. , Islam, M. , Abdo, H. S. , Subhani, T. , Khalil, K. A. , Almajid, A. A. , Yazdani, B., and Zhu, Y. Q., 2015, “ Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina,” Mater. Des., 88, pp. 1234–1243. [CrossRef]
Pak, S. Y. , Kim, H. M. , Kim, S. Y. , and Youn, J. R. , 2012, “ Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites With Mixed Boron Nitride and Multi-Walled Carbon Nanotube Fillers,” Carbon, 50(13), pp. 4830–4838. [CrossRef]
Yu, W. , Xie, H. Q. , Yin, L. Q. , Zhao, J. C. , Xia, L. G. , and Chen, L. F. , 2015, “ Exceptionally High Thermal Conductivity of Thermal Grease: Synergistic Effects of Graphene and Alumina,” Int. J. Therm. Sci., 91, pp. 76–82. [CrossRef]
Pradhan, B. , and Srivastava, S. K. , 2014, “ Synergistic Effect of Three-Dimensional Multi-Walled Carbon Nanotube–Nanofiller in Enhancing the Mechanical and Thermal Properties of High-Performance Silicone Rubber,” Polym. Int., 63(7), pp. 1219–1228. [CrossRef]
Yu, W. , Qi, Y. , Zhou, Y. , Chen, L. , Du, H. , and Xie, H. , 2016, “ Synergistic Improvement of Thermal Transport Properties for Thermoplastic Composites Containing Mixed Alumina and Graphene Fillers,” J. Appl. Polym. Sci., 133(13), p. 43242. [CrossRef]
He, Y. , Chen, Z. C. , and Ma, L. X. , 2010, “ Thermal Conductivity and Mechanical Properties of Silicone Rubber Filled With Different Particle Sized SiC,” Adv. Mater. Res., 87–88, pp. 137–142.
Chiu, H. T. , Liu, Y. L. , Lin, C. W. , Shong, Z. J. , and Tsai, P. A. , 2013, “ Thermal Conductivity and Electrical Conductivity of Silicone Rubber Filled With Aluminum Nitride and Aluminum Powder,” J. Polym. Eng., 33(6), pp. 545–549. [CrossRef]
Haznedar, G. , Cravanzola, S. , Zanetti, M. , Scarano, D. , Zecchina, A. , and Cesano, F. , 2013, “ Graphite Nanoplatelets and Carbon Nanotubes Based Polyethylene Composites: Electrical Conductivity and Morphology,” Mater. Chem. Phys., 143(1), pp. 47–52. [CrossRef]
Boudenne, A. , Ibos, L. , Fois, M. , Géhin, E. , and Majesté, J. C. , 2005, “ Anomalous Behavior of Thermal Conductivity and Diffusivity in Polymeric Materials Filled With Metallic Particles,” J. Mater. Sci, 40(16), pp. 4163–4167. [CrossRef]
Christopher, I. I. , and Azman, H. , 2016, “ Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites,” Rev. Chem. Eng., 32(4), pp. 413–457.
Pilhale, S. , Eder, F. , and Kroke, E. , 2014, “ Thermal Conductivity of Filled Sol-Gel-Derived Hybrid Materials,” J. Appl. Polym. Sci., 131(21), pp. 276–282.
Johari, G. P. , and Andersson, O. , 2015, “ Effects of Stacking Disorder on Thermal Conductivity of Cubic Ice,” J. Chem. Phys., 143(5), p. 054505. [CrossRef] [PubMed]
Murali, R. , Yang, Y. , Brenner, K. , Beck, T. , and Meindl, J. D. , 2009, “ Breakdown Current Density of Graphene Nano Ribbons,” Appl. Phys. Lett., 94(24), p. 243114. [CrossRef]


Grahic Jump Location
Fig. 1

Process flow diagram of thermal conductive silicone rubber

Grahic Jump Location
Fig. 2

SEM images of (a) spherical Al2O3 particles, (b) graphene nanoplatelets, and (c) silicone rubber composite with Al2O3 and GnPs

Grahic Jump Location
Fig. 3

Comparison of thermal conductivity of silicone rubber filled with and without GnPs at different filler loading

Grahic Jump Location
Fig. 4

Thermal conductivity enhancement and synergistic effects of silicone rubber filled with GR at different filler loading

Grahic Jump Location
Fig. 5

Schematic diagrams of the distribution of (a) spherical-Al2O3 particles, (b) graphene nanoplatelets, and (c) hybrid filler of S-Al2O3/GnPs used in silicone rubber

Grahic Jump Location
Fig. 6

Tensile properties of neat silicone rubber filled with S-Al2O3 or 1 wt % GnPs at different filler loading

Grahic Jump Location
Fig. 7

The density of thermal conductivity silicone rubber as a function of mass fraction of S-Al2O3 and GnPs



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In