0
Research Papers

Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications

[+] Author and Article Information
Alok Ghanekar

Department of Mechanical,
Industrial and Systems Engineering,
University of Rhode Island,
Kingston, RI 02881

Mingdi Sun, Zongqin Zhang

Research and Development Center,
CANATAL Environ Technical Co.,
88 Suyuan Avenue, Jiangning District,
Nanjing 21102, Jiangsu, China

Yi Zheng

Department of Mechanical,
Industrial and Systems Engineering,
University of Rhode Island,
Kingston, RI 02881
e-mail: zheng@uri.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS. Manuscript received November 29, 2016; final manuscript received January 12, 2017; published online June 27, 2017. Assoc. Editor: Jingchao Zhang.

J. Thermal Sci. Eng. Appl 10(1), 011004 (Jun 27, 2017) (4 pages) Paper No: TSEA-16-1350; doi: 10.1115/1.4036790 History: Received November 29, 2016; Revised January 12, 2017

We theoretically and numerically demonstrate optimal design of wavelength selective thermal emitter using one-dimensional (1D) and two-dimensional (2D) metal-dielectric gratings for thermophotovoltaic (TPV) applications. Proposed design consists of tungsten (W) and silicon dioxide (SiO2) gratings which can withstand high temperatures. Radiative properties of 1D grating were calculated using a numerical method, while effective medium approximation was used for 2D gratings. Optimal designs were obtained such that output power is maximum for GaSb photovoltaic (PV) cell at emitter temperature of 1500 K and radiated energy for longer wavelengths is limited to a low value. A constrained optimization was performed using genetic algorithm (GA) to arrive at optimal design.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Basu, S. , Chen, Y. , and Zhang, Z. , 2007, “ Microscale Radiation in Thermophotovoltaic Devices: A Review,” Int. J. Energy Res., 31(6), pp. 689–716. [CrossRef]
Coutts, T. , 1999, “ A Review of Progress in Thermophotovoltaic Generation of Electricity,” Renewable Sustainable Energy Rev., 3(2), pp. 77–184. [CrossRef]
Bosi, M. , Ferrari, C. , Melino, F. , Pinelli, M. , Spina, P. , and Venturini, M. , 2012, “ Thermophotovoltaic Generation: A State of the Art Review,” 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), Perugia, Italy, June 26–29, pp. 258–278.
White, D. C. , Wedlock, B. D. , and Blair, J. , 1961, “ Recent Advances in Thermal Energy Conversion,” 15th Annual Power Sources Conference, Fort Monmouth, NJ, May 9–11, pp. 125–132.
Tong, J. K. , Hsu, W.-C. , Huang, Y. , Boriskina, S. V. , and Chen, G. , 2015, “ Thin-Film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” e-print arXiv:1502.02061. https://arxiv.org/abs/1502.02061
Harder, N.-P. , and Würfel, P. , 2003, “ Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol., 18(5), p. S151. [CrossRef]
Rephaeli, E. , and Fan, S. , 2009, “ Absorber and Emitter for Solar Thermo-Photovoltaic Systems to Achieve Efficiency Exceeding the Shockley-Queisser Limit,” Opt. Express, 17(17), pp. 15145–15159. [CrossRef] [PubMed]
Wurfel, P. , and Ruppel, W. , 1980, “ Upper Limit of Thermophotovoltaic Solar-Energy Conversion,” IEEE Trans. Electron Devices, 27(4), pp. 745–750. [CrossRef]
Bermel, P. , Ghebrebrhan, M. , Chan, W. , Yeng, Y. X. , Araghchini, M. , Hamam, R. , Marton, C. H. , Jensen, K. F. , Soljačić, M. , Joannopoulos, J. D. , Johnson, S. G. , and Celanovic, I. , 2010, “ Design and Global Optimization of High-Efficiency Thermophotovoltaic Systems,” Opt. Express, 18(103), pp. A314–A334. [CrossRef] [PubMed]
Chan, W. R. , Bermel, P. , Pilawa-Podgurski, R. C. , Marton, C. H. , Jensen, K. F. , Senkevich, J. J. , Joannopoulos, J. D. , Soljačić, M. , and Celanovic, I. , 2013, “ Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics,” Proc. Natl. Acad. Sci., 110(14), pp. 5309–5314. [CrossRef]
Zhao, B. , Wang, L. , Shuai, Y. , and Zhang, Z. M. , 2013, “ Thermophotovoltaic Emitters Based on a Two-Dimensional Grating/Thin-Film Nanostructure,” Int. J. Heat Mass Transfer, 67, pp. 637–645. [CrossRef]
Tsai, M.-W. , Chuang, T.-H. , Meng, C.-Y. , Chang, Y.-T. , and Lee, S.-C. , 2006, “ High Performance Midinfrared Narrow-Band Plasmonic Thermal Emitter,” Appl. Phys. Lett., 89(17), p. 173116. [CrossRef]
Nagpal, P. , Han, S. E. , Stein, A. , and Norris, D. J. , 2008, “ Efficient Low-Temperature Thermophotovoltaic Emitters From Metallic Photonic Crystals,” Nano Lett., 8(10), pp. 3238–3243. [CrossRef] [PubMed]
Arpin, K. A. , Losego, M. D. , Cloud, A. N. , Ning, H. , Mallek, J. , Sergeant, N. P. , Zhu, L. , Yu, Z. , Kalanyan, B. , Parsons, G. N. , Girolami, G. S. , Abelson, J. R. , Fan, S. , and Braun, P. V. , 2013, “ Three-Dimensional Self-Assembled Photonic Crystals With High Temperature Stability for Thermal Emission Modification,” Nat. Commun., 4, p. 2630.
Zheng, Y. , and Ghanekar, A. , 2015, “ Radiative Energy and Momentum Transfer for Various Spherical Shapes: A Single Sphere, a Bubble, a Spherical Shell and a Coated Sphere,” J. Appl. Phys., 117(6), p. 064314. [CrossRef]
Ghanekar, A. , Lin, L. , Su, J. , Sun, H. , and Zheng, Y. , 2015, “ Role of Nanoparticles in Wavelength Selectivity of Multilayered Structures in the Far-Field and Near-Field Regimes,” Opt. Express, 23(19), pp. A1129–A1139. [CrossRef] [PubMed]
Ferguson, L. , and Dogan, F. , 2002, “ Spectral Analysis of Transition Metal-Doped MgO Matched Emitters for Thermophotovoltaic Energy Conversion,” J. Mater. Sci., 37(7), pp. 1301–1308. [CrossRef]
Licciulli, A. , Diso, D. , Torsello, G. , Tundo, S. , Maffezzoli, A. , Lomascolo, M. , and Mazzer, M. , 2003, “ The Challenge of High-Performance Selective Emitters for Thermophotovoltaic Applications,” Semicond. Sci. Technol., 18(5), p. S174. [CrossRef]
Nam, Y. , Yeng, Y. X. , Lenert, A. , Bermel, P. , Celanovic, I. , Soljačić, M. , and Wang, E. N. , 2014, “ Solar Thermophotovoltaic Energy Conversion Systems With Two-Dimensional Tantalum Photonic Crystal Absorbers and Emitters,” Sol. Energy Mater. Sol. Cells, 122, pp. 287–296. [CrossRef]
Ghanekar, A. , Lin, L. , and Zheng, Y. , 2016, “ Novel and Efficient Mie-Metamaterial Thermal Emitter for Thermophotovoltaic Systems,” Opt. Express, 24(10), pp. A868–A877. [CrossRef] [PubMed]
Heinzel, A. , Boerner, V. , Gombert, A. , Bläsi, B. , Wittwer, V. , and Luther, J. , 2000, “ Radiation Filters and Emitters for the NIR Based on Periodically Structured Metal Surfaces,” J. Mod. Opt., 47(13), pp. 2399–2419. [CrossRef]
Fleming, J. , Lin, S. , El-Kady, I. , Biswas, R. , and Ho, K. , 2002, “ All-Metallic Three-Dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature, 417(6884), pp. 52–55. [CrossRef] [PubMed]
Sai, H. , Kanamori, Y. , and Yugami, H. , 2005, “ Tuning of the Thermal Radiation Spectrum in the Near-Infrared Region by Metallic Surface Microstructures,” J. Micromech. Microeng., 15(9), p. S243. [CrossRef]
Gao, L. , Lemarchand, F. , and Lequime, M. , 2013, “ Refractive Index Determination of SiO2 Layer in the UV/VIS/NIR Range: Spectrophotometric Reverse Engineering on Single and Bi-Layer Designs,” J. Eur. Opt. Soc., 8.
Rakić, A. D. , Djurišić, A. B. , Elazar, J. M. , and Majewski, M. L. , 1998, “ Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Appl. Opt., 37(22), pp. 5271–5283. [CrossRef] [PubMed]
Timans, P. , 1996, Advances in Rapid Thermal and Integrated Processing, F. Roozeboom , ed., Springer Science & Business Media, Berlin.
Chen, Y.-B. , Zhang, Z. , and Timans, P. , 2007, “ Radiative Properties of Patterned Wafers With Nanoscale Linewidth,” ASME J. Heat Transfer, 129(1), pp. 79–90. [CrossRef]
Bräuer, R. , and Bryngdahl, O. , 1994, “ Design of Antireflection Gratings With Approximate and Rigorous Methods,” Appl. Opt., 33(34), pp. 7875–7882. [CrossRef] [PubMed]
Chew, W. C. , 1995, Waves and Fields in Inhomogeneous Media, IEEE Press, New York.
Woolf, D. , Hensley, J. , Cederberg, J. , Bethke, D. , Grine, A. , and Shaner, E. , 2014, “ Heterogeneous Metasurface for High Temperature Selective Emission,” Appl. Phys. Lett., 105(8), p. 081110. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematics of proposed designs consisting W/SiO2 gratings on W substrate: (a) a 1D rectangular grating and (b) symmetric 2D grating

Grahic Jump Location
Fig. 2

Emission spectrum of a typical thermal emitter is shown in comparison with EQEof GaSb cell. Spectral heat flux, maximum available heat flux, and power output are calculated at emitter temperature of 1500 K and typical values of VOC and FF.

Grahic Jump Location
Fig. 3

Spectral response of 1D and 2D optimal designs in comparison with EQE of GaSb cell. Emission spectra of suboptimal designs are shown for reference. (1D suboptimal: Λ = 0.5 μm, ϕ = 0.3, and t = 0.5 μm; 1D optimal: Λ = 446 nm, ϕ  = 0.17, and t = 630 nm; 2D suboptimal: Λ = 100 nm, ϕ  = 0.1, and t = 0.5 μm; 2D optimal: ϕ  = 0.71 and t = 95 nm.)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In