Abstract

In recent decades, origami has transitioned from a traditional art form into a systematic field of scientific inquiry, characterized by attributes such as high foldability, lightweight frameworks, diverse deformation modes, and limited degrees-of-freedom. Despite the abundant literature on smart materials, actuation methods, design principles, and manufacturing techniques, comprehensive reviews focusing on the mechanical properties of origami-inspired structures are relatively rare and unsystematic. This review aims to fill this void by analyzing and summarizing the significant studies conducted on the mechanical properties of origami-inspired structures from 2013 to 2023. We begin with an overview that includes essential definitions of origami, classical origami patterns, and their associated tessellated or stacked structures. Following this, we delve into the principal dynamic modeling method for origami and conduct an in-depth analysis of the key mechanical properties of origami-inspired structures. These properties include tunable stiffness, bistability and multistability, metamechanical properties demonstrated by origami-based metamaterials, and bio-inspired mechanical properties. Finally, we conclude with a comprehensive summary that discusses the current challenges and future directions in the field of origami-inspired structures. Our review provides a thorough synthesis of both the mechanical properties and practical applications of origami-inspired structures, aiming to serve as a reference and stimulate further research.

References

1.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang-Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.10.1002/advs.202000636
2.
Ai
,
C.
,
Chen
,
Y.
,
Xu
,
L.
,
Li
,
H.
,
Liu
,
C.
,
Shang
,
F.
,
Xia
,
Q.
, and
Zhang
,
S.
,
2021
, “
Current Development on Origami/Kirigami-Inspired Structure of Creased Patterns Toward Robotics
,”
Adv. Eng. Mater.
,
23
(
10
), p.
2100473
.10.1002/adem.202100473
3.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.10.1038/s41578-018-0009-8
4.
Peraza Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2019
,
Active Origami: Modeling, Design, and Applications
,
Springer International Publishing
,
Cham, Switzerland
.
5.
Suh
,
J.-E.
, and
Han
,
J.-H.
,
2023
, “
An Origami-Based Adaptive Vibration Isolator With Yoshimura-Patterned Reconfigurable Module
,”
J. Intell. Mater. Syst. Struct.
,
34
(
18
), pp.
2157
2171
.10.1177/1045389X231164529
6.
Du
,
Y.
,
Keller
,
T.
,
Song
,
C.
,
Xiao
,
Z.
,
Wu
,
L.
, and
Xiong
,
J.
,
2021
, “
Design and Foldability of Miura-Based Cylindrical Origami Structures
,”
Thin-Walled Struct.
,
159
, p.
107311
.10.1016/j.tws.2020.107311
7.
Liu
,
X.
,
Tian
,
Y.
,
Chen
,
F.
,
Mu
,
Y.
,
Caratenuto
,
A.
,
Minus
,
M. L.
, and
Zheng
,
Y.
,
2022
, “
A Waterbomb Origami Tower for Convertible Photothermal Evaporation
,”
J. Mater. Chem. A
,
10
(
36
), pp.
18657
18670
.10.1039/D2TA04365C
8.
Wang
,
S.
,
Gao
,
Y.
,
Huang
,
H.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of Deployable Curved-Surface Rigid Origami Flashers
,”
Mech. Mach. Theory
,
167
, p.
104512
.10.1016/j.mechmachtheory.2021.104512
9.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
063003
.10.1103/PhysRevE.101.063003
10.
Lang
,
R. J.
,
2007
, “
The Science of Origami
,”
Phys. World
,
20
(
2
), pp.
30
31
.10.1088/2058-7058/20/2/31
11.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Visualization Comput. Graphics
,
16
(
2
), pp.
298
311
.10.1109/TVCG.2009.67
12.
Chen
,
Y.
,
Fan
,
L.
,
Bai
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2020
, “
Assigning Mountain-Valley Fold Lines of Flat-Foldable Origami Patterns Based on Graph Theory and Mixed-Integer Linear Programming
,”
Comput. Struct.
,
239
, p.
106328
.10.1016/j.compstruc.2020.106328
13.
Dudte
,
L. H.
,
Choi
,
G. P. T.
, and
Mahadevan
,
L.
,
2021
, “
An Additive Algorithm for Origami Design
,”
Proc. Natl. Acad. Sci.
,
118
(
21
), p.
e2019241118
.10.1073/pnas.2019241118
14.
Cehula
,
J.
, and
Průša
,
V.
,
2020
, “
Computer Modelling of Origami-Like Structures Made of Light Activated Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
150
, p.
103235
.10.1016/j.ijengsci.2020.103235
15.
Chen
,
Q.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Origami Spring-Inspired Shape Morphing for Flexible Robotics
,”
Soft Rob.
,
9
(
4
), pp.
798
806
.10.1089/soro.2021.0030
16.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci.
,
118
(
36
), p.
e2110023118
.10.1073/pnas.2110023118
17.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), p.
eaau2835
.10.1126/sciadv.aau2835
18.
Zhang
,
Q.
,
Wang
,
X.
,
Cai
,
J.
, and
Feng
,
J.
,
2021
, “
Motion Paths and Mechanical Behavior of Origami-Inspired Tunable Structures
,”
Mater. Today Commun.
,
26
, p.
101872
.10.1016/j.mtcomm.2020.101872
19.
Karagiozova
,
D.
,
Zhang
,
J.
,
Chen
,
P.
,
Lu
,
G.
, and
You
,
Z.
,
2022
, “
Response of Graded Miura-Ori Metamaterials to Quasi-Static and Dynamic In-Plane Compression
,”
J. Aerosp. Eng.
,
35
(
4
), p.
04022035
.10.1061/(ASCE)AS.1943-5525.0001416
20.
Kim
,
W.
,
Eom
,
J.
, and
Cho
,
K.-J.
,
2022
, “
A Dual-Origami Design That Enables the Quasisequential Deployment and Bending Motion of Soft Robots and Grippers
,”
Adv. Intell. Syst.
,
4
(
3
), p.
2100176
.10.1002/aisy.202100176
21.
Liu
,
C.
,
Wohlever
,
S. J.
,
Ou
,
M. B.
,
Padir
,
T.
, and
Felton
,
S. M.
,
2022
, “
Shake and Take: Fast Transformation of an Origami Gripper
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
491
506
.10.1109/TRO.2021.3076563
22.
Li
,
D.
,
Fan
,
D.
,
Zhu
,
R.
,
Lei
,
Q.
,
Liao
,
Y.
,
Yang
,
X.
,
Pan
,
Y.
, et al.,
2023
, “
Origami-Inspired Soft Twisting Actuator
,”
Soft Rob.
,
10
(
2
), pp.
395
409
.10.1089/soro.2021.0185
23.
Jiao
,
Z.
,
Zhang
,
C.
,
Ruan
,
J.
,
Tang
,
W.
,
Lin
,
Y.
,
Zhu
,
P.
,
Wang
,
J.
,
Wang
,
W.
,
Yang
,
H.
, and
Zou
,
J.
,
2021
, “
Re-Foldable Origami-Inspired Bidirectional Twisting of Artificial Muscles Reproduces Biological Motion
,”
Cell Rep. Phys. Sci.
,
2
(
5
), p.
100407
.10.1016/j.xcrp.2021.100407
24.
Lee
,
K.
,
Wang
,
Y.
, and
Zheng
,
C.
,
2020
, “
TWISTER Hand: Underactuated Robotic Gripper Inspired by Origami Twisted Tower
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
488
500
.10.1109/TRO.2019.2956870
25.
Dufour
,
L.
,
Owen
,
K.
,
Mintchev
,
S.
, and
Floreano
,
D.
,
2016
, “
A Drone With Insect-Inspired Folding Wings
,”
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, Oct. 9–14, pp.
1576
1581
.10.1109/IROS.2016.7759255
26.
Johnson
,
K.
,
Arroyos
,
V.
,
Ferran
,
A.
,
Villanueva
,
R.
,
Yin
,
D.
,
Elberier
,
T.
,
Aliseda
,
A.
,
Fuller
,
S.
,
Iyer
,
V.
, and
Gollakota
,
S.
,
2023
, “
Solar-Powered Shape-Changing Origami Microfliers
,”
Sci. Rob.
,
8
(
82
), p.
eadg4276
.10.1126/scirobotics.adg4276
27.
Phan
,
H. V.
, and
Park
,
H. C.
,
2020
, “
Mechanisms of Collision Recovery in Flying Beetles and Flapping-Wing Robots
,”
Science
,
370
(
6521
), pp.
1214
1219
.10.1126/science.abd3285
28.
Sadeghi
,
S.
,
Allison
,
S. R.
,
Bestill
,
B.
, and
Li
,
S.
,
2021
, “
TMP Origami Jumping Mechanism With Nonlinear Stiffness
,”
Smart Mater. Struct.
,
30
(
6
), p.
065002
.10.1088/1361-665X/abf5b2
29.
Olan'g
,
Q.
,
Peng
,
H.
, and
Mao
,
T.
,
2022
, “
Characteristics of a Small Arbitrary Walking and Jumping Composite Soft Actuator With Origami Structure
,”
Sens. Actuator A-Phys.
,
347
, p.
113904
.10.1016/j.sna.2022.113904
30.
Göttler
,
C.
,
Elflein
,
K.
,
Siegwart
,
R.
, and
Sitti
,
M.
,
2021
, “
Spider Origami: Folding Principle of Jumping Spider Leg Joints for Bioinspired Fluidic Actuators
,”
Adv. Sci.
,
8
(
5
), p.
2003890
.10.1002/advs.202003890
31.
Tang
,
L.
,
Li
,
Y.
, and
Li
,
B.
,
2024
, “
Moobot: A Miniature Origami Omnidirectional Jumping Robot With High Trajectory Accuracy
,”
IEEE Trans. Ind. Electron.
,
71
(
6
), pp.
6032
6040
.10.1109/TIE.2023.3294629
32.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Felton
,
S. M.
, and
Vaziri
,
A.
,
2018
, “
Programmable Origami Strings
,”
Adv. Mater. Technol.
,
3
(
3
), p.
1700276
.10.1002/admt.201700276
33.
Lu
,
Q.
,
Clark
,
A. B.
,
Shen
,
M.
, and
Rojas
,
N.
,
2020
, “
An Origami-Inspired Variable Friction Surface for Increasing the Dexterity of Robotic Grippers
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2538
2545
.10.1109/LRA.2020.2972833
34.
Chen
,
B.
,
Shao
,
Z.
,
Xie
,
Z.
,
Liu
,
J.
,
Pan
,
F.
,
He
,
L.
,
Zhang
,
L.
, et al.,
2021
, “
Soft Origami Gripper With Variable Effective Length
,”
Adv. Intell. Syst.
,
3
(
10
), p.
2000251
.10.1002/aisy.202000251
35.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.10.1088/1361-665X/aa721e
36.
Ze
,
Q.
,
Wu
,
S.
,
Nishikawa
,
J.
,
Dai
,
J.
,
Sun
,
Y.
,
Leanza
,
S.
,
Zemelka
,
C.
,
Novelino
,
L. S.
,
Paulino
,
G. H.
, and
Zhao
,
R. R.
,
2022
, “
Soft Robotic Origami Crawler
,”
Sci. Adv.
,
8
(
13
), p.
eabm7834
.10.1126/sciadv.abm7834
37.
Jin
,
T.
,
Li
,
L.
,
Wang
,
T.
,
Wang
,
G.
,
Cai
,
J.
,
Tian
,
Y.
, and
Zhang
,
Q.
,
2022
, “
Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
748
764
.10.1109/TRO.2021.3096644
38.
Liu
,
S.
,
Peng
,
G.
,
Li
,
Z.
,
Li
,
W.
, and
Sun
,
L.
,
2023
, “
Low-Frequency Vibration Isolation Via an Elastic Origami-Inspired Structure
,”
Int. J. Mech. Sci.
,
260
, p.
108622
.10.1016/j.ijmecsci.2023.108622
39.
Ye
,
K.
, and
Ji
,
J. C.
,
2022
, “
An Origami Inspired Quasi-Zero Stiffness Vibration Isolator Using a Novel Truss-Spring Based Stack Miura-Ori Structure
,”
Mech. Syst. Signal Process.
,
165
, p.
108383
.10.1016/j.ymssp.2021.108383
40.
Deleo
,
A. A.
,
O'Neil
,
J.
,
Yasuda
,
H.
,
Salviato
,
M.
, and
Yang
,
J.
,
2020
, “
Origami-Based Deployable Structures Made of Carbon Fiber Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
191
, p.
108060
.10.1016/j.compscitech.2020.108060
41.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.10.1038/s41586-021-03407-4
42.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2022
, “
A Programmable Origami-Inspired Space Deployable Structure With Curved Surfaces
,”
Eng. Struct.
,
256
, p.
113934
.10.1016/j.engstruct.2022.113934
43.
Lee
,
D.-Y.
,
Kim
,
S.-R.
,
Kim
,
J.-S.
,
Park
,
J.-J.
, and
Cho
,
K.-J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Rob.
,
4
(
2
), pp.
163
180
.10.1089/soro.2016.0038
44.
Fonseca
,
L. M.
,
Rodrigues
,
G. V.
,
Savi
,
M. A.
, and
Paiva
,
A.
,
2019
, “
Nonlinear Dynamics of an Origami Wheel With Shape Memory Alloy Actuators
,”
Chaos, Solitons Fractals
,
122
, pp.
245
261
.10.1016/j.chaos.2019.03.033
45.
Lee
,
D.-Y.
,
Kim
,
J.-K.
,
Sohn
,
C.-Y.
,
Heo
,
J.-M.
, and
Cho
,
K.-J.
,
2021
, “
High-Load Capacity Origami Transformable Wheel
,”
Sci. Rob.
,
6
(
53
), p.
eabe0201
.10.1126/scirobotics.abe0201
46.
Lee
,
J.-G.
, and
Rodrigue
,
H.
,
2019
, “
Origami-Based Vacuum Pneumatic Artificial Muscles With Large Contraction Ratios
,”
Soft Rob.
,
6
(
1
), pp.
109
117
.10.1089/soro.2018.0063
47.
Robertson
,
M. A.
,
Kara
,
O. C.
, and
Paik
,
J.
,
2021
, “
Soft Pneumatic Actuator-Driven Origami-Inspired Modular Robotic ‘Pneumagami’
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
72
85
.10.1177/0278364920909905
48.
Gabler
,
F.
,
Karnaushenko
,
D. D.
,
Karnaushenko
,
D.
, and
Schmidt
,
O. G.
,
2019
, “
Magnetic Origami Creates High Performance Micro Devices
,”
Nat. Commun.
,
10
(
1
), p.
3013
.10.1038/s41467-019-10947-x
49.
Xu
,
T.
,
Zhang
,
J.
,
Salehizadeh
,
M.
,
Onaizah
,
O.
, and
Diller
,
E.
,
2019
, “
Millimeter-Scale Flexible Robots With Programmable Three-Dimensional Magnetization and Motions
,”
Sci. Rob.
,
4
(
29
), p.
eaav4494
.10.1126/scirobotics.aav4494
50.
Tang
,
D.
,
Zhang
,
C.
,
Sun
,
H.
,
Dai
,
H.
,
Xie
,
J.
,
Fu
,
J.
, and
Zhao
,
P.
,
2021
, “
Origami-Inspired Magnetic-Driven Soft Actuators With Programmable Designs and Multiple Applications
,”
Nano Energy
,
89
, p.
106424
.10.1016/j.nanoen.2021.106424
51.
Luo
,
M.
,
Yan
,
R.
,
Wan
,
Z.
,
Qin
,
Y.
,
Santoso
,
J.
,
Skorina
,
E. H.
, and
Onal
,
C. D.
,
2018
, “
OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1993
1999
.10.1109/LRA.2018.2800112
52.
Li
,
Y.
,
Huang
,
H.
, and
Li
,
B.
,
2023
, “
Design of a Deployable Continuum Robot Using Elastic Kirigami-Origami
,”
IEEE Rob. Autom. Lett.
,
8
(
12
), pp.
8382
8389
.10.1109/LRA.2023.3330055
53.
Zhu
,
Y.
,
Birla
,
M.
,
Oldham
,
K. R.
, and
Filipov
,
E. T.
,
2020
, “
Elastically and Plastically Foldable Electrothermal Micro-Origami for Controllable and Rapid Shape Morphing
,”
Adv. Funct. Mater.
,
30
(
40
), p.
2003741
.10.1002/adfm.202003741
54.
Ho
,
D. T.
,
Park
,
H. S.
,
Kim
,
S. Y.
, and
Schwingenschlögl
,
U.
,
2020
, “
Graphene Origami With Highly Tunable Coefficient of Thermal Expansion
,”
ACS Nano
,
14
(
7
), pp.
8969
8974
.10.1021/acsnano.0c03791
55.
Kim
,
S.-H.
,
Lee
,
H. R.
,
Yu
,
S. J.
,
Han
,
M.-E.
,
Lee
,
D. Y.
,
Kim
,
S. Y.
,
Ahn
,
H.-J.
, et al.,
2015
, “
Hydrogel-Laden Paper Scaffold System for Origami-Based Tissue Engineering
,”
Proc. Natl. Acad. Sci.
,
112
(
50
), pp.
15426
15431
.10.1073/pnas.1504745112
56.
Kang
,
J.-H.
,
Kim
,
H.
,
Santangelo
,
C. D.
, and
Hayward
,
R. C.
,
2019
, “
Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction
,”
Adv. Mater.
,
31
(
39
), p.
0193006
.10.1002/adma.201903006
57.
Zhang
,
Y.
,
Le
,
X.
,
Jian
,
Y.
,
Lu
,
W.
,
Zhang
,
J.
, and
Chen
,
T.
,
2019
, “
3D Fluorescent Hydrogel Origami for Multistage Data Security Protection
,”
Adv. Funct. Mater.
,
29
(
46
), p.
1905514
.10.1002/adfm.201905514
58.
Chen
,
Z.
,
Li
,
Y.
, and
Li
,
Q. M.
,
2021
, “
Hydrogel-Driven Origami Metamaterials for Tunable Swelling Behavior
,”
Mater. Des.
,
207
, p.
109819
.10.1016/j.matdes.2021.109819
59.
Huang
,
Z.
,
Wei
,
C.
,
Dong
,
L.
,
Wang
,
A.
,
Yao
,
H.
,
Guo
,
Z.
, and
Mi
,
S.
,
2022
, “
Fluid-Driven Hydrogel Actuators With an Origami Structure
,”
iScience
,
25
(
7
), p.
104674
.10.1016/j.isci.2022.104674
60.
An
,
N.
,
Li
,
M.
, and
Zhou
,
J.
,
2020
, “
Modeling SMA-Enabled Soft Deployable Structures for Kirigami/Origami Reflectors
,”
Int. J. Mech. Sci.
,
180
, p.
105753
.10.1016/j.ijmecsci.2020.105753
61.
Velvaluri
,
P.
,
Soor
,
A.
,
Plucinsky
,
P.
,
de Miranda
,
R. L.
,
James
,
R. D.
, and
Quandt
,
E.
,
2021
, “
Origami-Inspired Thin-Film Shape Memory Alloy Devices
,”
Sci. Rep.
,
11
(
1
), p.
10988
.10.1038/s41598-021-90217-3
62.
Zheng
,
K.
,
Gao
,
E.
,
Tian
,
B.
,
Liang
,
J.
,
Liu
,
Q.
,
Xue
,
E.
,
Shao
,
Q.
, and
Wu
,
W.
,
2022
, “
Modularized Paper Actuator Based on Shape Memory Alloy, Printed Heater, and Origami
,”
Adv. Intell. Syst.
,
4
(
12
), p.
2200194
.10.1002/aisy.202200194
63.
Chung
,
C.
,
Hyeon
,
K.
,
Jeong
,
J.
,
Lee
,
D.-Y.
, and
Kyung
,
K.-U.
,
2024
, “
Origami-Inspired Wearable Robot for Shoulder Abduction Assistance: A Double-Petal Mechanism Utilizing Shape Memory Alloy Actuators
,”
IEEE Rob. Autom. Lett.
,
9
(
2
), pp.
1484
1491
.10.1109/LRA.2023.3341751
64.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.10.1103/PhysRevApplied.11.064069
65.
Jape
,
S.
,
Garza
,
M.
,
Ruff
,
J.
,
Espinal
,
F.
,
Sessions
,
D.
,
Huff
,
G.
,
Lagoudas
,
D. C.
,
Peraza Hernandez
,
E. A.
, and
Hartl
,
D. J.
,
2020
, “
Self-Foldable Origami Reflector Antenna Enabled by Shape Memory Polymer Actuation
,”
Smart Mater. Struct.
,
29
(
11
), p.
115011
.10.1088/1361-665X/abaac2
66.
Liu
,
Y.
,
Zhang
,
W.
,
Zhang
,
F.
,
Lan
,
X.
,
Leng
,
J.
,
Liu
,
S.
,
Jia
,
X.
, et al.,
2018
, “
Shape Memory Behavior and Recovery Force of 4D Printed Laminated Miura-Origami Structures Subjected to Compressive Loading
,”
Compos. Part B: Eng.
,
153
, pp.
233
242
.10.1016/j.compositesb.2018.07.053
67.
Mailen
,
R. W.
,
Long
,
R. M.
,
Parmar
,
K.
,
Indaco
,
M.
, and
Guzzetti
,
D.
,
2023
, “
Quantifying Hinge Torque in Self-Folding, Shape Memory Polymer Origami Under Varying Thermal Loads
,”
Appl. Mater. Today
,
35
, p.
101949
.10.1016/j.apmt.2023.101949
68.
Chen
,
H.
,
Zhang
,
X.-L.
,
Zhang
,
Y.-Y.
,
Wang
,
D.
,
Bao
,
D.-L.
,
Que
,
Y.
,
Xiao
,
W.
, et al.,
2019
, “
Atomically Precise, Custom-Design Origami Graphene Nanostructures
,”
Science
,
365
(
6457
), pp.
1036
1040
.10.1126/science.aax7864
69.
Miskin
,
M. Z.
,
Dorsey
,
K. J.
,
Bircan
,
B.
,
Han
,
Y.
,
Muller
,
D. A.
,
McEuen
,
P. L.
, and
Cohen
,
I.
,
2018
, “
Graphene-Based Bimorphs for Micron-Sized, Autonomous Origami Machines
,”
Proc. Natl. Acad. Sci.
,
115
(
3
), pp.
466
470
.10.1073/pnas.1712889115
70.
Mu
,
J.
,
Hou
,
C.
,
Wang
,
H.
,
Li
,
Y.
,
Zhang
,
Q.
, and
Zhu
,
M.
,
2015
, “
Origami-Inspired Active Graphene-Based Paper for Programmable Instant Self-Folding Walking Devices
,”
Sci. Adv.
,
1
(
10
), p.
e1500533
.10.1126/sciadv.1500533
71.
Shah
,
S. I. H.
,
Bashir
,
S.
,
Ashfaq
,
M.
,
Altaf
,
A.
, and
Rmili
,
H.
,
2021
, “
Lightweight and Low-Cost Deployable Origami Antennas—A Review
,”
IEEE Access
,
9
, pp.
86429
86448
.10.1109/ACCESS.2021.3088953
72.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Rob.
,
3
(
20
), p.
eaau0275
.10.1126/scirobotics.aau0275
73.
Xiang
,
X. M.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Energy Absorption of Origami Inspired Structures and Materials
,”
Thin-Walled Struct.
,
157
, p.
107130
.10.1016/j.tws.2020.107130
74.
Leanza
,
S.
,
Wu
,
S.
,
Sun
,
X.
,
Qi
,
H. J.
, and
Zhao
,
R. R.
,
2024
, “
Active Materials for Functional Origami
,”
Adv. Mater.
,
36
(
9
), p.
2302066
.10.1002/adma.202302066
75.
Rojas
,
J. P.
,
Conchouso
,
D.
,
Arevalo
,
A.
,
Singh
,
D.
,
Foulds
,
I. G.
, and
Hussain
,
M. M.
,
2017
, “
Paper-Based Origami Flexible and Foldable Thermoelectric Nanogenerator
,”
Nano Energy
,
31
, pp.
296
301
.10.1016/j.nanoen.2016.11.012
76.
Cai
,
J.
,
Estakhrianhaghighi
,
E.
, and
Akbarzadeh
,
A.
,
2022
, “
Functionalized Graphene Origami Metamaterials With Tunable Thermal Conductivity
,”
Carbon
,
191
, pp.
610
624
.10.1016/j.carbon.2022.02.008
77.
Li
,
X.
,
Sheng
,
X.
,
Fang
,
Y.
,
Hu
,
X.
,
Gong
,
S.
,
Sheng
,
M.
,
Lu
,
X.
, and
Qu
,
J.
,
2023
, “
Wearable Janus-Type Film With Integrated All-Season Active/Passive Thermal Management, Thermal Camouflage, and Ultra-High Electromagnetic Shielding Efficiency Tunable by Origami Process
,”
Adv. Funct. Mater.
,
33
(
18
), p.
2212776
.10.1002/adfm.202212776
78.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.10.1038/nmat4540
79.
Meloni
,
M.
,
Zhang
,
Q.
,
Pak
,
J.
,
Bilore
,
M. N.
,
Ma
,
R.
,
Ballegaard
,
E.
,
Lee
,
D. S.-H.
, and
Cai
,
J.
,
2022
, “
Designing Origami Tessellations Composed of Quadrilateral Meshes and Degree-4 Vertices for Engineering Applications
,”
Autom. Constr.
,
142
, p.
104482
.10.1016/j.autcon.2022.104482
80.
Walker
,
A.
, and
Stankovic
,
T.
,
2022
, “
Algorithmic Design of Origami Mechanisms and Tessellations
,”
Commun. Mater.
,
3
(
1
), p.
4
.10.1038/s43246-022-00227-5
81.
Feng
,
H.
,
Ma
,
J.
,
Chen
,
Y.
, and
You
,
Z.
,
2018
, “
Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami
,”
Sci. Rep.
,
8
(
1
), p.
9522
.10.1038/s41598-018-27877-1
82.
Mukhopadhyay
,
T.
,
Ma
,
J.
,
Feng
,
H.
,
Hou
,
D.
,
Gattas
,
J. M.
,
Chen
,
Y.
, and
You
,
Z.
,
2020
, “
Programmable Stiffness and Shape Modulation in Origami Materials: Emergence of a Distant Actuation Feature
,”
Appl. Mater. Today
,
19
, p.
100537
.10.1016/j.apmt.2019.100537
83.
Ma
,
J.
,
Feng
,
H.
,
Chen
,
Y.
,
Hou
,
D.
, and
You
,
Z.
,
2020
, “
Folding of Tubular Waterbomb
,”
Research
, 2020, Article No. 1735081.10.34133/2020/1735081
84.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.10.1002/adma.201805282
85.
Zhang
,
Q.
,
Fang
,
H.
, and
Xu
,
J.
,
2020
, “
Programmable Stopbands and Supratransmission Effects in a Stacked Miura-Origami Metastructure
,”
Phys. Rev. E
,
101
(
4
), p.
042206
.10.1103/PhysRevE.101.042206
86.
Dang
,
X.
,
Lu
,
L.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Deployment Kinematics of Axisymmetric Miura Origami: Unit Cells, Tessellations, and Stacked Metamaterials
,”
Int. J. Mech. Sci.
,
232
, p.
107615
.10.1016/j.ijmecsci.2022.107615
87.
Zhou
,
H.
,
Fang
,
H.
,
Wu
,
H.
, and
Xu
,
J.
,
2023
, “
Effects of Inter-Cell Connections on the Multi-Stable Dynamics of Dual-Cell Stacked Miura-Origami Structures
,”
J. Sound Vib.
,
553
, p.
117682
.10.1016/j.jsv.2023.117682
88.
Pratapa
,
P. P.
,
Liu
,
K.
, and
Paulino
,
G. H.
,
2019
, “
Geometric Mechanics of Origami Patterns Exhibiting Poisson's Ratio Switch by Breaking Mountain and Valley Assignment
,”
Phys. Rev. Lett.
,
122
(
15
), p.
155501
.10.1103/PhysRevLett.122.155501
89.
Meng
,
F.
,
Chen
,
S.
,
Zhang
,
W.
,
Ou
,
P.
,
Zhang
,
J.
,
Chen
,
C.
, and
Song
,
J.
,
2021
, “
Negative Poisson's Ratio in Graphene Miura Origami
,”
Mech. Mater.
,
155
, p.
103774
.10.1016/j.mechmat.2021.103774
90.
Moradweysi
,
P.
,
Santucci
,
P. M.
,
Carta
,
G.
,
Goudarzi
,
T.
,
Aghdam
,
M. M.
,
Baldi
,
A.
, and
Brun
,
M.
,
2024
, “
Design and Analysis of a Thick Miura-Ori Folded Structure With Large Negative Poisson's Ratio
,”
Mech. Adv. Mater. Struct.
,
31
(
4
), pp.
908
926
.10.1080/15376494.2022.2126567
91.
Wang
,
X.
,
Qu
,
H.
, and
Guo
,
S.
,
2023
, “
Tristable Property and the High Stiffness Analysis of Kresling Pattern Origami
,”
Int. J. Mech. Sci.
,
256
, p.
108515
.10.1016/j.ijmecsci.2023.108515
92.
Yin
,
P.
,
Han
,
H.
,
Tang
,
L.
,
Tan
,
X.
,
Guo
,
M.
,
Xia
,
C.
, and
Aw
,
K. C.
,
2024
, “
Kresling Origami-Inspired Electromagnetic Energy Harvester With Reversible Nonlinearity
,”
Smart Mater. Struct.
,
33
(
3
), p.
035043
.10.1088/1361-665X/ad27fb
93.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
.10.1007/s11548-017-1545-1
94.
Tang
,
J.
, and
Wei
,
F.
,
2022
, “
Miniaturized Origami Robots: Actuation Approaches and Potential Applications
,”
Macromol. Mater. Eng.
,
307
(
2
), p.
2100671
.10.1002/mame.202100671
95.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.10.1115/1.4039314
96.
Lang
,
R.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
97.
Hull
,
T.
,
2003
, “
Counting Mountain-Valley Assignments for Flat Folds
,”
Ars Combinatoria
,
67
, pp.
175
187
.10.48550/arXiv.1410.5022
98.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.10.1115/1.4025379
99.
Santangelo
,
C. D.
,
2020
, “
Theory and Practice of Origami in Science
,”
Soft Matter
,
16
(
1
), pp.
94
101
.10.1039/C9SM01745C
100.
Karami
,
A.
,
Reddy
,
A.
, and
Nassar
,
H.
,
2024
, “
Curved-Crease Origami for Morphing Metamaterials
,”
Phys. Rev. Lett.
,
132
(
10
), p.
108201
.10.1103/PhysRevLett.132.108201
101.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.10.1098/rsos.150067
102.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Robot.
,
12
(
2
), p. 021106.10.1115/1.4045940
103.
Fonseca
,
L. M.
,
Rodrigues
,
G. V.
, and
Savi
,
M. A.
,
2022
, “
An Overview of the Mechanical Description of Origami-Inspired Systems and Structures
,”
Int. J. Mech. Sci.
,
223
, p.
107316
.10.1016/j.ijmecsci.2022.107316
104.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congr. Numer.
,
100
, pp.
215
224
.http://origametry.net/papers/origamimath.pdf
105.
Zhu
,
YI.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, to Mechanics, toward Multiphysics
,”
ASME Appl. Mech. Rev.
,
74
(
3
), p. 03080110.1115/1.4055031.
106.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley Creases of a Flat Origami
,”
Proceedings of the First International Meeting Origami of Science and Technology
,
Universita di Padova
,
Italy
, Dec. 6–7, pp.
153
157
.
107.
Justin
,
J.
,
1989
, “
Mathematical Aspects of Paper Folding
,”
Proceedings of the First International Meeting of Origami Science and Technology
,
Universita di Padova
,
Italy
, Dec. 6–9, pp.
263
277
.
108.
Kasahara
,
K.
, and
Takahama
,
T.
,
1987
,
Origami for the Connoisseur
,
Japan Publications,
Tokyo, Japan.
109.
Fulton
,
J.
, and
Schaub
,
H.
,
2021
, “
Forward Dynamics Analysis of Origami-Folded Deployable Spacecraft Structures
,”
Acta Astronaut.
,
186
, pp.
549
561
.10.1016/j.actaastro.2021.03.022
110.
Bolanos
,
D.
,
Ynchausti
,
C.
,
Brown
,
N.
,
Pruett
,
H.
,
Hunter
,
J.
,
Clark
,
B.
,
Bateman
,
T.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2022
, “
Considering Thickness-Accommodation, Nesting, Grounding and Deployment in Design of Miura-Ori Based Space Arrays
,”
Mech. Mach. Theory
,
174
, p.
104904
.10.1016/j.mechmachtheory.2022.104904
111.
Wang
,
S.
,
Wu
,
J.
,
Yan
,
P.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2023
, “
Design of Deployable Circular Structures Based on Miura Origami Pattern
,”
Mech. Mach. Theory
,
186
, p.
105350
.10.1016/j.mechmachtheory.2023.105350
112.
Guo
,
Z.
,
Tachi
,
T.
, and
Yu
,
H.
,
2022
, “
Folding Process Planning of Rigid Origami Using the Explicit Expression and Rapidly Exploring Random Tree Method
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011003
.10.1115/1.4051439
113.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.10.1098/rspa.2015.0846
114.
O'Neil
,
J.
,
Salviato
,
M.
, and
Yang
,
J.
,
2023
, “
Energy Absorption Behavior of Filament Wound CFRP Origami Tubes Pre-Folded in Kresling Pattern
,”
Compos. Struct.
,
304
, p.
116376
.10.1016/j.compstruct.2022.116376
115.
Turco
,
E.
,
Barchiesi
,
E.
,
Causin
,
A.
,
dell'Isola
,
F.
, and
Solci
,
M.
,
2023
, “
Kresling Tube Metamaterial Exhibits Extreme Large-Displacement Buckling Behavior
,”
Mech. Res. Commun.
,
134
, p.
104202
.10.1016/j.mechrescom.2023.104202
116.
Li
,
M.
,
Zhou
,
Z.
,
Hao
,
B.
,
Yu
,
C.
,
Chen
,
Y.
, and
Ma
,
J.
,
2023
, “
Design and Deformation Analysis of an Inflatable Metallic Cylinder Based on the Kresling Origami Pattern
,”
Thin-Walled Struct.
,
188
, p.
110859
.10.1016/j.tws.2023.110859
117.
Ye
,
H.
,
Ma
,
J.
,
Zhou
,
X.
,
Wang
,
H.
, and
You
,
Z.
,
2019
, “
Energy Absorption Behaviors of Pre-Folded Composite Tubes With the Full-Diamond Origami Patterns
,”
Compos. Struct.
,
221
, p.
110904
.10.1016/j.compstruct.2019.110904
118.
Suh
,
J.-E.
,
Kim
,
T.-H.
, and
Han
,
J.-H.
,
2021
, “
New Approach to Folding a Thin-Walled Yoshimura Patterned Cylinder
,”
J. Spacecr. Rockets
,
58
(
2
), pp.
516
530
.10.2514/1.A34784
119.
Feng
,
H.
,
Yan
,
G.
, and
Prabhakar
,
P.
,
2023
, “
Role of Material Directionality on the Mechanical Response of Miura-Ori Composite Structures
,”
Compos. Struct.
,
306
, p.
116606
.10.1016/j.compstruct.2022.116606
120.
Yang
,
H.
, and
Ma
,
L.
,
2018
, “
Multi-Stable Mechanical Metamaterials With Shape-Reconfiguration and Zero Poisson's Ratio
,”
Mater. Des.
,
152
, pp.
181
190
.10.1016/j.matdes.2018.04.064
121.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.10.1073/pnas.1217998110
122.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.10.1103/PhysRevLett.114.185502
123.
Cai
,
J.
,
Deng
,
X.
,
Zhou
,
Y.
,
Feng
,
J.
, and
Tu
,
Y.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
, p.
061406
.10.1115/1.4030158
124.
Xi
,
K.
,
Chai
,
S.
,
Ma
,
J.
, and
Chen
,
Y.
,
2023
, “
Multi-Stability of the Extensible Origami Structures
,”
Adv. Sci.
,
10
(
29
), p.
2303454
.10.1002/advs.202303454
125.
Li
,
Y.
,
Pan
,
F.
,
Lin
,
X.
,
Yang
,
K.
,
Ren
,
Y.
,
Yang
,
W.
, and
Chen
,
Y.
,
2023
, “
Multistable Origami Honeycomb
,”
Int. J. Mech. Sci.
,
243
, p.
108044
.10.1016/j.ijmecsci.2022.108044
126.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2016
, “
Uncovering the Deformation Mechanisms of Origami Metamaterials by Introducing Generic Degree-Four Vertices
,”
Phys. Rev. E
,
94
(
4
), p.
043002
.10.1103/PhysRevE.94.043002
127.
Fang
,
H.
,
Chu
,
S.-C. A.
, and
Wang
,
K. W.
,
2017
, “
Self-Locking Origami Structures and Locking-Induced Piecewise Stiffness
,”
ASME
Paper No. DETC2017-67197.10.1115/DETC2017-67197
128.
Fang
,
H.
,
Li
,
S.
, and
Wang
,
K. W.
,
2016
, “
Self-Locking Degree-4 Vertex Origami Structures
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160682
.10.1098/rspa.2016.0682
129.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12321
12326
.10.1073/pnas.1509465112
130.
Sengupta
,
S.
, and
Li
,
S.
,
2018
, “
Harnessing the Anisotropic Multistability of Stacked-Origami Mechanical Metamaterials for Effective Modulus Programming
,”
J. Intell. Mater. Syst. Struct.
,
29
(
14
), pp.
2933
2945
.10.1177/1045389X18781040
131.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami
,
5
, pp.
291
304
.https://www3.eng.cam.ac.uk/~sdg/preprint/5OSME.pdf
132.
Dong
,
S.
,
Zhao
,
X.
, and
Yu
,
Y.
,
2021
, “
Dynamic Unfolding Process of Origami Tessellations
,”
Int. J. Solids Struct.
,
226–227
, p.
111075
.10.1016/j.ijsolstr.2021.111075
133.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.10.1016/j.ijsolstr.2017.05.028
134.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
, pp.
80
93
.10.1016/j.ijsolstr.2018.05.011
135.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model Formulation for Structural Analysis of Curved-Crease Origami
,”
Int. J. Solids Struct.
,
204–205
, pp.
114
127
.10.1016/j.ijsolstr.2020.08.010
136.
Sadeghi
,
S.
,
Betsill
,
B. D.
, and
Li
,
S.
,
2019
, “
Design and Optimization of an Origami-Inspired Jumping Mechanism With Nonlinear Stiffness Properties
,”
ASME
Paper No. DETC2019-97706.10.1115/DETC2019-97706
137.
Yasuda
,
H.
,
Chong
,
C.
,
Charalampidis
,
E. G.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2016
, “
Formation of Rarefaction Waves in Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
4
), p.
043004
.10.1103/PhysRevE.93.043004
138.
Sadeghi
,
S.
, and
Li
,
S.
,
2019
, “
Fluidic Origami Cellular Structure With Asymmetric Quasi-Zero Stiffness for Low-Frequency Vibration Isolation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065006
.10.1088/1361-665X/ab143c
139.
Soleimani
,
H.
,
Goudarzi
,
T.
, and
Aghdam
,
M. M.
,
2021
, “
Advanced Structural Modeling of a Fold in Origami/Kirigami Inspired Structures
,”
Thin-Walled Struct.
,
161
, p.
107406
.10.1016/j.tws.2020.107406
140.
Fonseca
,
L. M.
, and
Savi
,
M. A.
,
2020
, “
Nonlinear Dynamics of an Autonomous Robot With Deformable Origami Wheels
,”
Int. J. Non-Linear Mech.
,
125
, p.
103533
.10.1016/j.ijnonlinmec.2020.103533
141.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci.
,
115
(
9
), pp.
2032
2037
.10.1073/pnas.1720171115
142.
Wang
,
X.
,
Qu
,
H.
,
Li
,
X.
,
Kuang
,
Y.
,
Wang
,
H.
, and
Guo
,
S.
,
2023
, “
Multi-Triangles Cylindrical Origami and Inspired Metamaterials With Tunable Stiffness and Stretchable Robotic Arm
,”
PNAS Nexus
,
2
(
4
), p.
pgad098
.10.1093/pnasnexus/pgad098
143.
Lu
,
L.
,
Leanza
,
S.
, and
Zhao
,
R. R.
,
2023
, “
Origami With Rotational Symmetry: A Review on Their Mechanics and Design
,”
ASME Appl. Mech. Rev.
,
75
(
5
), p.
050801
.10.1115/1.4056637
144.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.10.1098/rspa.2017.0348
145.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G.-G.
, and
Van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
.10.1103/PhysRevLett.114.055503
146.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.10.1103/PhysRevLett.110.215501
147.
Brunck
,
V.
,
Lechenault
,
F.
,
Reid
,
A.
, and
Adda-Bedia
,
M.
,
2016
, “
Elastic Theory of Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
3
), p.
033005
.10.1103/PhysRevE.93.033005
148.
Yasuda
,
H.
,
Tachi
,
T.
,
Lee
,
M.
, and
Yang
,
J.
,
2017
, “
Origami-Based Tunable Truss Structures for Non-Volatile Mechanical Memory Operation
,”
Nat. Commun.
,
8
(
1
), p.
962
.10.1038/s41467-017-00670-w
149.
Han
,
H.
,
Tang
,
L.
,
Cao
,
D.
, and
Liu
,
L.
,
2020
, “
Modeling and Analysis of Dynamic Characteristics of Multi-Stable Waterbomb Origami Base
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2339
2362
.10.1007/s11071-020-06082-8
150.
Zhai
,
Z.
,
Wang
,
Y.
,
Lin
,
K.
,
Wu
,
L.
, and
Jiang
,
H.
,
2020
, “
In Situ Stiffness Manipulation Using Elegant Curved Origami
,”
Sci. Adv.
,
6
(
47
), p.
eabe2000
.10.1126/sciadv.abe2000
151.
Sun
,
Y.
,
Song
,
K.
,
Ju
,
J.
, and
Zhou
,
X.
,
2024
, “
Curved-Creased Origami Mechanical Metamaterials With Programmable Stabilities and Stiffnesses
,”
Int. J. Mech. Sci.
,
262
, p.
108729
.10.1016/j.ijmecsci.2023.108729
152.
Miyazawa
,
Y.
,
Yasuda
,
H.
,
Kim
,
H.
,
Lynch
,
J. H.
,
Tsujikawa
,
K.
,
Kunimine
,
T.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2021
, “
Heterogeneous Origami-Architected Materials With Variable Stiffness
,”
Commun. Mater.
,
2
(
1
), p.
110
.10.1038/s43246-021-00212-4
153.
Li
,
Z.
,
Kidambi
,
N.
,
Wang
,
L.
, and
Wang
,
K.-W.
,
2020
, “
Uncovering Rotational Multifunctionalities of Coupled Kresling Modular Structures
,”
Extreme Mech. Lett.
,
39
, p.
100795
.10.1016/j.eml.2020.100795
154.
Liu
,
Q.
,
Ye
,
H.
,
Cheng
,
J.
,
Li
,
H.
,
He
,
X.
,
Jian
,
B.
, and
Ge
,
Q.
,
2023
, “
Stiffness-Tunable Origami Structures Via Multimaterial Three-Dimensional Printing
,”
Acta Mech. Solida Sin.
,
36
(
4
), pp.
582
593
.10.1007/s10338-023-00403-1
155.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.10.1002/adma.202110384
156.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
157.
Wo
,
Z.
, and
Filipov
,
E. T.
,
2023
, “
Stiffening Multi-Stable Origami Tubes by Outward Popping of Creases
,”
Extreme Mech. Lett.
,
58
, p.
101941
.10.1016/j.eml.2022.101941
158.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), p.
052211
.10.1103/PhysRevE.95.052211
159.
Yasuda
,
H.
,
Johnson
,
K.
,
Arroyos
,
V.
,
Yamaguchi
,
K.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2022
, “
Leaf-Like Origami With Bistability for Self-Adaptive Grasping Motions
,”
Soft Rob.
,
9
(
5
), pp.
938
947
.10.1089/soro.2021.0008
160.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
,
Chen
,
Y.
, and
You
,
Z.
,
2024
, “
Reconfigurable Origami-Inspired Multistable Metamorphous Structures
,”
Sci. Adv.
,
10
(
22
), p.
eadk8662
.10.1126/sciadv.adk8662
161.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.10.1126/science.1252876
162.
Bowen
,
L.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2014
, “
A Dynamic Model of Magneto-Active Elastomer Actuation of the Waterbomb Base
,”
ASME
Paper No. DETC2014-35407.10.1115/DETC2014-35407
163.
Grasinger
,
M.
,
Gillman
,
A.
, and
Buskohl
,
P. R.
,
2022
, “
Multistability, Symmetry and Geometric Conservation in Eightfold Waterbomb Origami
,”
Proc. R. Soc. A
,
478
(
2268
), p.
20220270
.10.1098/rspa.2022.0270
164.
Flores
,
J.
,
Stein-Montalvo
,
L.
, and
Adriaenssens
,
S.
,
2022
, “
Effect of Crease Curvature on the Bistability of the Origami Waterbomb Base
,”
Extreme Mech. Lett.
,
57
, p.
101909
.10.1016/j.eml.2022.101909
165.
Zhang
,
H.
,
Zhu
,
B.
,
Chen
,
B.
,
Cui
,
C.
,
Li
,
H.
, and
Zhang
,
X.
,
2022
, “
A Phase Diagram-Based Stability Design Method for a Symmetrical Origami Waterbomb Base
,”
ASME J. Mech. Des.
,
144
(
10
), p.
103303
.10.1115/1.4054806
166.
Melancon
,
D.
,
Forte
,
A. E.
,
Kamp
,
L. M.
,
Gorissen
,
B.
, and
Bertoldi
,
K.
,
2022
, “
Inflatable Origami: Multimodal Deformation Via Multistability
,”
Adv. Funct. Mater.
,
32
(
35
), p.
2201891
.10.1002/adfm.202201891
167.
Lu
,
L.
,
Dang
,
X.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Conical Kresling Origami and Its Applications to Curvature and Energy Programming
,”
Proc. R. Soc. A
,
478
(
2257
), p.
20210712
.10.1098/rspa.2021.0712
168.
Sharma
,
H.
,
Chaudhary
,
A.
, and
Upadhyay
,
S. H.
,
2023
, “
Experimental Verification of the Bistable Behavior of Conical Kresling Origami
,”
Thin-Walled Struct.
,
190
, p.
110980
.10.1016/j.tws.2023.110980
169.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), p.
4238
.10.1038/s41467-019-11935-x
170.
Zhang
,
L.
,
Pan
,
F.
,
Ma
,
Y.
,
Yang
,
K.
,
Guo
,
S.
, and
Chen
,
Y.
,
2023
, “
Bistable Reconfigurable Origami Metamaterials With High Load-Bearing and Low State-Switching Forces
,”
Extreme Mech. Lett.
,
63
, p.
102064
.10.1016/j.eml.2023.102064
171.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.10.1038/nmat4232
172.
Fan
,
J.
,
Zhang
,
L.
,
Wei
,
S.
,
Zhang
,
Z.
,
Choi
,
S.-K.
,
Song
,
B.
, and
Shi
,
Y.
,
2021
, “
A Review of Additive Manufacturing of Metamaterials and Developing Trends
,”
Mater. Today
,
50
, pp.
303
328
.10.1016/j.mattod.2021.04.019
173.
Kumar
,
P.
,
Ali
,
T.
, and
Pai
,
M. M. M.
,
2021
, “
Electromagnetic Metamaterials: A New Paradigm of Antenna Design
,”
IEEE Access
,
9
, pp.
18722
18751
.10.1109/ACCESS.2021.3053100
174.
Gao
,
N.
,
Zhang
,
Z.
,
Deng
,
J.
,
Guo
,
X.
,
Cheng
,
B.
, and
Hou
,
H.
,
2022
, “
Acoustic Metamaterials for Noise Reduction: A Review
,”
Adv. Mater. Technol.
,
7
(
6
), p.
2100698
.10.1002/admt.202100698
175.
Ren
,
Z.
,
Chang
,
Y.
,
Ma
,
Y.
,
Shih
,
K.
,
Dong
,
B.
, and
Lee
,
C.
,
2020
, “
Leveraging of MEMS Technologies for Optical Metamaterials Applications
,”
Adv. Opt. Mater.
,
8
(
3
), p.
1900653
.10.1002/adom.201900653
176.
Wan
,
M.
,
Yu
,
K.
,
Gu
,
J.
,
Zeng
,
H.
,
Sun
,
H.
, and
Khatibi
,
A. A.
,
2023
, “
4D Printed TMP Origami Metamaterials With Programmable Mechanical Properties
,”
Int. J. Mech. Sci.
,
250
, p.
108275
.10.1016/j.ijmecsci.2023.108275
177.
Zhou
,
X.
,
Zang
,
S.
, and
You
,
Z.
,
2016
, “
Origami Mechanical Metamaterials Based on the Miura-Derivative Fold Patterns
,”
Proc. R. Soc. A
,
472
(
2191
), p.
20160361
.10.1098/rspa.2016.0361
178.
Fang
,
H.
,
Chu
,
S.-C. A.
,
Xia
,
Y.
, and
Wang
,
K.-W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.10.1002/adma.201706311
179.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.10.1038/natrevmats.2017.66
180.
Chen
,
Y.
,
Liang
,
J.
,
Shi
,
P.
,
Feng
,
J.
,
Sareh
,
P.
, and
Dai
,
J.
,
2023
, “
Inverse Design of Programmable Poisson's Ratio and In-Plane Stiffness for Generalized Four-Fold Origami
,”
Compos. Struct.
,
311
, p.
116789
.10.1016/j.compstruct.2023.116789
181.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.10.1002/adma.201700360
182.
Cai
,
J.
, and
Akbarzadeh
,
A.
,
2021
, “
Hierarchical Kirigami-Inspired Graphene and Carbon Nanotube Metamaterials: Tunability of Thermo-Mechanic Properties
,”
Mater. Des.
,
206
, p.
109811
.10.1016/j.matdes.2021.109811
183.
Chen
,
Z.
,
Wu
,
T.
,
Nian
,
G.
,
Shan
,
Y.
,
Liang
,
X.
,
Jiang
,
H.
, and
Qu
,
S.
,
2019
, “
Ron Resch Origami Pattern Inspired Energy Absorption Structures
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011005
.10.1115/1.4041415
184.
Wang
,
Z.
,
Jing
,
L.
,
Yao
,
K.
,
Yang
,
Y.
,
Zheng
,
B.
,
Soukoulis
,
C. M.
,
Chen
,
H.
, and
Liu
,
Y.
,
2017
, “
Origami-Based Reconfigurable Metamaterials for Tunable Chirality
,”
Adv. Mater.
,
29
(
27
), p.
1700412
.10.1002/adma.201700412
185.
Wickeler
,
A. L.
, and
Naguib
,
H. E.
,
2020
, “
Novel Origami-Inspired Metamaterials: Design, Mechanical Testing and Finite Element Modelling
,”
Mater. Des.
,
186
, p.
108242
.10.1016/j.matdes.2019.108242
186.
Xiang
,
X.
,
Fu
,
Z.
,
Zhang
,
S.
,
Lu
,
G.
,
Ha
,
N. S.
,
Liang
,
Y.
, and
Zhang
,
X.
,
2021
, “
The Mechanical Characteristics of Graded Miura-Ori Metamaterials
,”
Mater. Des.
,
211
, p.
110173
.10.1016/j.matdes.2021.110173
187.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
1
), p.
5979
.10.1038/srep05979
188.
Hedayati
,
R.
,
Roudbarian
,
N.
,
Tahmasiyan
,
S.
, and
Bodaghi
,
M.
,
2023
, “
Gradient Origami Metamaterials for Programming Out-of-Plane Curvatures
,”
Adv. Eng. Mater.
,
25
(
14
), p.
2201838
.10.1002/adem.202201838
189.
Resch
,
R. D.
,
1968
, “
Self-Supporting Structural Unit Having a Series of Repetitious Geometrical Modules
,” U.S. Patent No. 3,407,558.
190.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
, p.
111006
.10.1115/1.4025389
191.
Kshad
,
M. A. E.
,
Popinigis
,
C.
, and
Naguib
,
H. E.
,
2019
, “
3D Printing of Ron-Resch-Like Origami Cores for Compression and Impact Load Damping
,”
Smart Mater. Struct.
,
28
(
1
), p.
015027
.10.1088/1361-665X/aaec40
192.
Lyu
,
S.
,
Qin
,
B.
,
Deng
,
H.
, and
Ding
,
X.
,
2021
, “
Origami-Based Cellular Mechanical Metamaterials With Tunable Poisson's Ratio: Construction and Analysis
,”
Int. J. Mech. Sci.
,
212
, p.
106791
.10.1016/j.ijmecsci.2021.106791
193.
Wen
,
G.
,
Chen
,
G.
,
Long
,
K.
,
Wang
,
X.
,
Liu
,
J.
, and
Xie
,
Y. M.
,
2021
, “
Stacked-Origami Mechanical Metamaterial With Tailored Multistage Stiffness
,”
Mater. Des.
,
212
, p.
110203
.10.1016/j.matdes.2021.110203
194.
Harris
,
J. A.
, and
McShane
,
G. J.
,
2021
, “
Impact Response of Metallic Stacked Origami Cellular Materials
,”
Int. J. Impact Eng.
,
147
, p.
103730
.10.1016/j.ijimpeng.2020.103730
195.
Misseroni
,
D.
,
Pratapa
,
P. P.
,
Liu
,
K.
, and
Paulino
,
G. H.
,
2022
, “
Experimental Realization of Tunable Poisson's Ratio in Deployable Origami Metamaterials
,”
Extreme Mech. Lett.
,
53
, p.
101685
.10.1016/j.eml.2022.101685
196.
Li
,
Z.
,
Yang
,
Q.
,
Fang
,
R.
,
Chen
,
W.
, and
Hao
,
H.
,
2021
, “
Origami Metamaterial With Two-Stage Programmable Compressive Strength Under Quasi-Static Loading
,”
Int. J. Mech. Sci.
,
189
, p.
105987
.10.1016/j.ijmecsci.2020.105987
197.
Yamaguchi
,
K.
,
Yasuda
,
H.
,
Tsujikawa
,
K.
,
Kunimine
,
T.
, and
Yang
,
J.
,
2022
, “
Graph-Theoretic Estimation of Reconfigurability in Origami-Based Metamaterials
,”
Mater. Des.
,
213
, p.
110343
.10.1016/j.matdes.2021.110343
198.
Ye
,
H.
,
Liu
,
Q.
,
Cheng
,
J.
,
Li
,
H.
,
Jian
,
B.
,
Wang
,
R.
,
Sun
,
Z.
,
Lu
,
Y.
, and
Ge
,
Q.
,
2023
, “
Multimaterial 3D Printed Self-Locking Thick-Panel Origami Metamaterials
,”
Nat. Commun.
,
14
(
1
), p.
1607
.10.1038/s41467-023-37343-w
199.
Lee
,
T.-U.
,
Chen
,
Y.
,
Heitzmann
,
M. T.
, and
Gattas
,
J. M.
,
2021
, “
Compliant Curved-Crease Origami-Inspired Metamaterials With a Programmable Force-Displacement Response
,”
Mater. Des.
,
207
, p.
109859
.10.1016/j.matdes.2021.109859
200.
Eidini
,
M.
, and
Paulino
,
G. H.
,
2015
, “
Unraveling Metamaterial Properties in Zigzag-Base Folded Sheets
,”
Sci. Adv.
,
1
(
8
), p.
e1500224
.10.1126/sciadv.1500224
201.
Eidini
,
M.
,
2016
, “
Zigzag-Base Folded Sheet Cellular Mechanical Metamaterials
,”
Extreme Mech. Lett.
,
6
, pp.
96
102
.10.1016/j.eml.2015.12.006
202.
Kamrava
,
S.
,
Ghosh
,
R.
,
Wang
,
Z.
, and
Vaziri
,
A.
,
2019
, “
Origami-Inspired Cellular Metamaterial With Anisotropic Multi-Stability
,”
Adv. Eng. Mater.
,
21
(
2
), p.
1800895
.10.1002/adem.201800895
203.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedra
,”
Symmetry: Art and Science, International Society for the Interdisciplinary Study of Symmetry
,
Gmuend
,
Austria
, pp.
204
213
.https://www.researchgate.net/publication/284415083_Synthesis_of_rigidfoldable_cylindrical_polyhedra
204.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi–Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(
2159
), p.
20130351
.10.1098/rspa.2013.0351
205.
Wang
,
H.
,
Zhao
,
D.
,
Jin
,
Y.
,
Wang
,
M.
,
Mukhopadhyay
,
T.
, and
You
,
Z.
,
2020
, “
Modulation of Multi-Directional Auxeticity in Hybrid Origami Metamaterials
,”
Appl. Mater. Today
,
20
, p.
100715
.10.1016/j.apmt.2020.100715
206.
Liu
,
W.
,
Jiang
,
H.
, and
Chen
,
Y.
,
2022
, “
3D Programmable Metamaterials Based on Reconfigurable Mechanism Modules
,”
Adv. Funct. Mater.
,
32
(
9
), p.
2109865
.10.1002/adfm.202109865
207.
Jamalimehr
,
A.
,
Mirzajanzadeh
,
M.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2022
, “
Rigidly Flat-Foldable Class of Lockable Origami-Inspired Metamaterials With Topological Stiff States
,”
Nat. Commun.
,
13
(
1
), p.
1816
.10.1038/s41467-022-29484-1
208.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.10.1016/j.tws.2012.02.007
209.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.10.1016/j.tws.2016.02.007
210.
Yang
,
K.
,
Xu
,
S.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2018
, “
Multi-Objective Optimization of Multi-Cell Tubes With Origami Patterns for Energy Absorption
,”
Thin-Walled Struct.
,
123
, pp.
100
113
.10.1016/j.tws.2017.11.005
211.
Tao
,
R.
,
Ji
,
L.
,
Li
,
Y.
,
Wan
,
Z.
,
Hu
,
W.
,
Wu
,
W.
,
Liao
,
B.
,
Ma
,
L.
, and
Fang
,
D.
,
2020
, “
4D Printed Origami Metamaterials With Tunable Compression Twist Behavior and Stress-Strain Curves
,”
Compos. Part B: Eng.
,
201
, p.
108344
.10.1016/j.compositesb.2020.108344
212.
Wen
,
G.
,
Zhang
,
S.
,
Wang
,
H.
,
Wang
,
Z.-P.
,
He
,
J.
,
Chen
,
Z.
,
Liu
,
J.
, and
Xie
,
Y. M.
,
2023
, “
Origami-Based Acoustic Metamaterial for Tunable and Broadband Sound Attenuation
,”
Int. J. Mech. Sci.
,
239
, p.
107872
.10.1016/j.ijmecsci.2022.107872
213.
Zhang
,
Z.
,
Chen
,
G.
,
Xun
,
Y.
,
Long
,
Y.
,
Wang
,
J.
,
Wang
,
H.
, and
Angeles
,
J.
,
2023
, “
Bioinspired Rigid-Soft Hybrid Origami Actuator With Controllable Versatile Motion and Variable Stiffness
,”
IEEE Trans. Rob.
,
39
(
6
), pp.
4768
4784
.10.1109/TRO.2023.3311630
214.
Haas
,
F.
,
Gorb
,
S.
, and
Wootton
,
R. J.
,
2000
, “
Elastic Joints in Dermapteran Hind Wings: Materials and Wing Folding
,”
Arthropod Struct. Dev.
,
29
(
2
), pp.
137
146
.10.1016/S1467-8039(00)00025-6
215.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.10.1126/science.aap7753
216.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2021
, “
Bio-Inspired Origami Metamaterials With Metastable Phases Through Mechanical Phase Transitions
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091002
.10.1115/1.4050556
217.
Kim
,
W.
,
Byun
,
J.
,
Kim
,
J.-K.
,
Choi
,
W.-Y.
,
Jakobsen
,
K.
,
Jakobsen
,
J.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2019
, “
Bioinspired Dual-Morphing Stretchable Origami
,”
Sci. Rob.
,
4
(
36
), p.
eaay3493
.10.1126/scirobotics.aay3493
218.
Rajabi
,
H.
,
Ghoroubi
,
N.
,
Stamm
,
K.
,
Appel
,
E.
, and
Gorb
,
S. N.
,
2017
, “
Dragonfly Wing Nodus: A One-Way Hinge Contributing to the Asymmetric Wing Deformation
,”
Acta Biomater.
,
60
, pp.
330
338
.10.1016/j.actbio.2017.07.034
219.
Wootton
,
R. J.
,
1991
, “
The Functional Morphology of the Wings of Odonata
,”
Adv. Odonatol.
,
5
(
1
), pp.
153
169
.https://natuurtijdschriften.nl/pub/593092
220.
Saito
,
K.
,
Yamamoto
,
S.
,
Maruyama
,
M.
, and
Okabe
,
Y.
,
2014
, “
Asymmetric Hindwing Foldings in Rove Beetles
,”
Proc. Natl. Acad. Sci.
,
111
(
46
), pp.
16349
16352
.10.1073/pnas.1409468111
221.
Hedrick
,
T. L.
,
Combes
,
S. A.
, and
Miller
,
L. A.
,
2015
, “
Recent Developments in the Study of Insect Flight
,”
Can. J. Zool.
,
93
(
12
), pp.
925
943
.10.1139/cjz-2013-0196
222.
Sun
,
J.
, and
Bhushan
,
B.
,
2011
, “
The Structure and Mechanical Properties of Dragonfly Wings and Their Role on Flyability
,”
C. R. Mec.
,
340
(
1–2
), pp.
3
17
.10.1016/j.crme.2011.11.003
223.
Lentink
,
D.
,
Müller
,
U. K.
,
Stamhuis
,
E. J.
,
De Kat
,
R.
,
Van Gestel
,
W.
,
Veldhuis
,
L. L. M.
,
Henningsson
,
P.
,
Hedenström
,
A.
,
Videler
,
J. J.
, and
Van Leeuwen
,
J. L.
,
2007
, “
How Swifts Control Their Glide Performance With Morphing Wings
,”
Nature
,
446
(
7139
), pp.
1082
1085
.10.1038/nature05733
224.
Nudds
,
R. L.
,
Dyke
,
G. J.
, and
Rayner
,
J. M. V.
,
2007
, “
Avian Brachial Index and Wing Kinematics: Putting Movement Back Into Bones
,”
J. Zool.
,
272
(
2
), pp.
218
226
.10.1111/j.1469-7998.2006.00261.x
225.
Di Luca
,
M.
,
Mintchev
,
S.
,
Heitz
,
G.
,
Noca
,
F.
, and
Floreano
,
D.
,
2017
, “
Bioinspired Morphing Wings for Extended Flight Envelope and Roll Control of Small Drones
,”
Interface Focus
,
7
(
1
), p.
20160092
.10.1098/rsfs.2016.0092
226.
Haas
,
F.
,
Gorb
,
S.
, and
Blickhan
,
R.
,
2000
, “
The Function of Resilin in Beetle Wings
,”
Proc. R. Soc. B-Biol. Sci.
,
267
(
1451
), pp.
1375
1381
.10.1098/rspb.2000.1153
227.
Song
,
Z.
,
Yan
,
Y.
,
Tong
,
J.
, and
Sun
,
J.
,
2020
, “
Asian Ladybird Folding and Unfolding of Hind Wing: Biomechanical Properties of Resilin in Affecting the Tensile Strength of the Folding Area
,”
J. Mater. Sci.
,
55
(
10
), pp.
4524
4537
.10.1007/s10853-019-04326-6
228.
Sun
,
J.
,
Liu
,
C.
, and
Bhushan
,
B.
,
2019
, “
A Review of Beetle Hindwings: Structure, Mechanical Properties, Mechanism and Bioinspiration
,”
J. Mech. Behav. Biomed. Mater.
,
94
, pp.
63
73
.10.1016/j.jmbbm.2019.02.031
229.
Saito
,
K.
,
Nomura
,
S.
,
Yamamoto
,
S.
,
Niiyama
,
R.
, and
Okabe
,
Y.
,
2017
, “
Investigation of Hindwing Folding in Ladybird Beetles by Artificial Elytron Transplantation and Microcomputed Tomography
,”
Proc. Natl. Acad. Sci.
,
114
(
22
), pp.
5624
5628
.10.1073/pnas.1620612114
230.
Baek
,
S.-M.
,
Yim
,
S.
,
Chae
,
S.-H.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2020
, “
Ladybird Beetle–Inspired Compliant Origami
,”
Sci. Rob.
,
5
(
41
), p.
eaaz6262
.10.1126/scirobotics.aaz6262
231.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,”
Proceedings of the Twelfth Annual Symposium on Computational Geometry
, Association for Computing Machinery, Philadelphia, PA, May 24–26, pp.
98
105
.10.1145/237218.237249
232.
Mitani
,
J.
,
2012
, “
Oripa
,”
University of Tsukuba
,
Tsukuba, Japan
, accessed Sept. 24, 2024, https://mitani.cs.tsukuba.ac.jp/oripa/
233.
Tachi
,
T.
,
2009
, “
Rigid Origami Simulator
,”
The University of Tokyo
,
Tokyo, Japan
, accessed Sept. 24, 2024, https://tsg.ne.jp/TT/software/index.html
234.
Ghassaei
,
A.
,
2017
, “
Origami Simulator
,” accessed Sept. 24, 2024, https://origamisimulator.org/
235.
Suto
,
K.
, and
Tanimichi
,
K.
,
2021
, “
Crane
,”
Nature Architects Inc., Tokyo, Japan, accessed Sept. 24, 2024
, https://www.food4rhino.com/en/app/crane
236.
Wang
,
S.
,
Yan
,
P.
,
Huang
,
H.
,
Zhang
,
N.
, and
Li
,
B.
,
2023
, “
Inflatable Metamorphic Origami
,”
Research
,
6
, p.
0133
.10.34133/research.0133
You do not currently have access to this content.